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Required reading

• Hamilton, Lawrence C. 1992. Regression with 
graphics. Belmont: Duxbury. Ch 1-8

• Hamilton, Lawrence C. 2008. A Low-Tech 
Guide to Causal Modelling.  
http://pubpages.unh.edu/~lch/causal2.pdf

• Allison, Paul D. 2002. Missing Data. Sage 
University Paper: QASS 136. London: Sage.
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Background to the sciences

• In the history of civilization there are 2 unrivalled 
accelerators:
– The invention of writing about 5-6000 years ago
– The invention of the scientific method for separating facts 

from fantasy about 5-600 years ago

• There is no topic more important to learn than the 
basics of the scientific method

• That does not mean that it is not – at times – rather 
boring ….
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Basics of causal beliefs

• First: doubt what you believe is a causal link until you 
can give good valid reasons justifying your belief

• Second: there are usually many types of good valid 
reasons for believing in a particular causal link, for 
example, scientific consensus
– If the overwhelming majority of certified scientists says that 

human activities contribute to global warming, then we are 
justified believing that by changing our activities we could 
contribute less to global warming 

• Third: random conjunctures (“correlation”) are not good 
valid reasons for believing in a causal link 
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Causal mechanism
• Elster 2007 Explaining Social Behaviour:

• ”mechanisms are frequently occurring and 
easily recognizable causal patterns that are 
triggered under generally unknown 
conditions or with indeterminate 
consequences” (page 36)

• Also sometimes limited to “causal chains”
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Causal correlations 
• This class will focus on how to distinguish 

between random conjunctures and that 
which might be a valid causal correlation

• That which might be a valid causal 
correlation will need a causal mechanism
explaining how the cause can produce the 
effect before we have a valid reason to 
believe in the causal link 
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Primacy of theory
• To say it more bluntly: If you do not have a 

believable theory (and this may well start as a 
fantasy) then regression techniques will tell you 
nothing even if you find a seemingly non-random 
correlation

• But without a valid and believable empirical 
analysis any believable fantasy will remain just 
that: a fantasy (assuming you cannot find other 
valid verifications)
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Types of causal mechanisms I

• Structural causation 
– A Social structure has causal impacts that are not well understood. 

In a framework of methodological individualism one may say that 
it limits and orders the options that actors can choose from. Hence, 
variables such as age, sex, and place of living can be used as 
proxies for poorly understood causal factors. 

– Budget constraints (time and income constraints) have the same 
character. They limit and orders the options that actors can choose 
from. However, they enter the model more through the way the 
dependent variable is constructed, and the kind of link function 
(linear or logistic) used to mediate between observations and 
dependent variable. 
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Types of causal mechanisms II

• Individual causation
– Preferences (norms, values, attitudes) may be difficult to observe 

in detail but are assumed to be present

– Resources (income/ capital, education/ human capital, access to 
networks/ social capital) are usually measured extensively even 
if unevenly. Resources represent budget constraints

– Perception of opportunities will often depend on position in 
social structure

– Beliefs about resources and opportunities are important. They 
may be based on both fact and fiction
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Preliminaries

• Prerequisite: SOS1002 or equivalent

• Goal: to read critically research articles 
using quantitative methods in your field of 
interest

• Required reading … see above 

• Term paper: this is part of the examination 
and evaluation procedure
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Goals for the class
• The goal is that each of you shall be able to read 

critically research articles discussing quantitative 
data. This means
– You are to know the pitfalls so you can evaluate the 

validity of an article 

• You are to learn how to perform straightforward 
analyses of co-variation in ”quantitative” and 
”qualitative” data (nominal scale data in 
regression analysis), and in particular: 
– Also here you have to demonstrate that you know the 

pitfalls 
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Fotnote:
• Skiljet mellom kvalitative data og 

kvantitative data er ikkje fullt så enkelt som 
det høyrest ut til.

• Dei generelle prinsippa for kvalitetskontroll 
gjeld uansett type data. 

• Og ein god del av det som tidlegare berre 
kunne studerast med ”kvalitative” data kan 
ein i dag analysere systematisk ved hjelp av 
logistisk regresjonsteknikk. 
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Lecture I 
Basics of what you are assumed to know

• The following is basically repeating known stuff

• Variable distributions
– Ringdal Ch 12 p251-270

– Hamilton Ch 1 p1-23

• Bivariat regression 
– Ringdal Ch 17-18 p361-387

– Hamilton Ch 2 p29-59
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Some basic concepts 

– Cause

– Model

– Population

– Sample

– Variable: level of measurement 

– Variable: measure of centralization

– Variable: measure of dispersion
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Data analysis

• Descriptive use of data
– Developing classifications

• Analytical use of data
– Describe phenomena that cannot be observed 

directly (inference) 

– Causal links between directly eller indirectly 
observable phenomena (theory or model 
development) 



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 9

Spring 2010 ©  Erling Berge 2010 17

Causal analysis:
from co-variation to causal connection

• From colloquial speach to theory
– Fantasy and intuition, established science tradition

• From theory to model
– Operationalisation 

• From observation to generalisation 
– Causal analysis 
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THREE BASIC DIVISIONS

Observed Real interest
THEORY/ MODEL - REALITY
SAMPLE - POPULATION
CO-VARIATION - CAUSE

On the one hand we have what we are able to
observe and record, on the other hand, we have
what we would like to discuss and know more
about
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Basic sources of error
• Errors in theory / model

– Model specification: valid conclusions require a correct 
(true) model

• Errors in the sample 
– Selection bias

• Measurement problems
– Missing cases and measurement errors

– Validity og reliability

• Multiple comparisons 
– Conclusions are valid only for the sample
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From population to sample

• POPULATION (all units)

Simple random sampling

• SAMPLE (selected units)
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Unit and variable 

• A unit, as a carrier of data, will be contextually 
defined
– SUPER - UNIT: e.g. the local community
– UNIT: e.g. household
– SUB - UNIT: e.g. person

• Variable: empirical concept used to 
characterize units under investigation. Each 
unit is characterized by being given a 
variable value
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Data matrix and level of measurement

• Matrix defined by Units * Variables
– A table presenting the characteristics of all investigated 

units ordered so that all variable values are listed in the 
same sequence for all units

• Level of measurement for a variable
– Nominal scale    *classification

– Ordinal scale      *classification and rank

– Interval scale     *classification, rank and distance

– Ratio scale *classification, rank, distance and absolute zero
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Variable analysis

• Description
– Central tendency and dispersion 

– Form of distribution

– Frequency distributions and histograms 

• Comparing distributions
– Quantile plots

– Box plots 
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VARIABLE: central tendency

• Mean   
sum of all values of the variable for all 
units divided by the number of units

• MEDIAN 
The variable value in an ordered 
distribution that has half the units on each 
side

• MODUS 
The typical value. The value in a 
distribution that has the highest frequency
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Fotnote:

• Gjennomsnittet har

• Nullsum eigenskapen ∑i (Yi - Ỹ) = 0 

• LSQ eigenskapen ∑i (Yi - Ỹ)2 < ∑i (Yi - c)2

for alle c ≠ Ỹ
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VARIABLE: measures of dispersion I

• MODAL PERCENTAGE
• The percentage of units with value like the mode
• RANGE OF VARIATION
• The difference between highest and lowest value 

in an ordered distribution
• QUARTILE DIFFERENCE
• Range of variation of the 50% of units closest to 

the median (Q3-Q1) 
• MAD - Median Absolute Deviation
• Median of the absolute value of the difference 

between median and observed value:  
– MAD(xi) = median |xi - median(xi)|
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VARIABLE: measures of dispersion II

• STANDARD DEVIATION
• Square root of mean squared deviation from the mean 

– sy =√ [(i(Yi - Ỹ)2)/(n – 1)] 

• MEAN DEVIATION
• Mean of the absolute value of the deviation from the mean

• VARIANCE
• Standard deviation squared: 

– sy
2 = (i(Yi - Ỹ)2)/(n – 1) 

(nb: here Ỹ is the mean of Y) 
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Variable: form of distribution I

• Symmetrical distributions

• Skewed distributions
– ”Heavy” and ”Light” tails

• Normal distributions 
– Are not ”normal”

– Are unambiguously determined by mean and 
variance (  og  ) 
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Some statistical procedures require 
normal distributions, others work better 
if we have normal distributions
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Between   
<-1sd,+1sd> 
68,269 % of 
all 
observations 
are found

[sd = standard 
deviation]

Between 
<-1.96sd + 1.96sd> 
95 % of all 
observations are 
found
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Fotnote: 

• Nokre statistiske prosedyrar krev 
normalfordeling, mange fungerer betre 
dersom vi har normalfordelte variablar.
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Skewed distributions

• Positively skewed has Ỹ > Md

• Negatively skewed has Ỹ < Md

• Symmetric distributions has Ỹ ≈ Md

• nb: here Ỹ = mean of Y
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Symmetric distributions
• Median and IQR are resistant against the impact of 

extreme values 
• Mean and standard deviation are not
• In the normal distribution (ND) sy ≈ IQR/1.35

• If we in a symmetric distribution find
– sy > IQR/1.35 then the tails are heavier than in the ND

– sy < IQR/1.35 then the tails are lighter than in the ND

– sy ≈ IQR/1.35 then the tails are about similar to the ND
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Squaring 

Third root

Symmetric 

Transformasjon

Right skewed

Left skewed
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Variable: analyzing distributions I

• Box plot
– The box is constructed based on the quartile 

values Q1 og Q3 . Observations within < Q1, Q3> 
are in the box-

– Adjacent large values are defined as those outside 
the box but inside Q3 + 1.5*IQR or Q1 - 1.5*IQR 

– Outliers (seriously extreme values) are those 
outside of Q3 + 1.5*IQR or Q1 - 1.5*IQR  
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Variables: analyzing distributions II

• Quantiles is a generalisation of quartiles and 
percentiles

• Quantile values are variable values that 
correspond to particular fractions of the 
total sample or observed data, e.g.
– Median is 0.5 quantile (or 50% percentile) 
– Lower quartile is 0.25 quantile
– 10% percentile is 0.1 quantile … 
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Fotnote:

• Symmetri-diagram basert på avstand opp og 
nedover frå median i ei ordna fordeling vil 
gi ei rett linje dersom vi har symmetri, ei 
kurva linje dersom det ikkje er symmetri i 
fordelinga. 
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Variables: analyzing distributions III

• Quantile plots
– Quantile values against value of variable

• The Lorentz curve is a special case of this (it gives 
us the Gini-index) 

• Quantile-Normal plot
– Plot of quantile values on one variable against 

quantile values of a Normal distribution with 
the same mean and standard deviation
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Example: Randaberg 1985

• Questionnaire: (the number of decare land 
you own / 10 da = 1 ha)

Q:  ANTALL DEKAR GRUNN DU 
eier:_________

(Number of decare you own: ____)
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38279.311Std. Deviation

21885.17Mean

99900Maximum

0Minimum

380380N

Valid N (listwise) 
NUMBER OF DEKARE 

LAND OWNED

NUMBER OF DEKARE LAND OWNED 



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 21

Spring 2010 ©  Erling Berge 2010 41

0 20000 40000 60000 80000 100000

NUMBER OF DEKAR LAND OWNED

0

50

100

150

200

Fr
eq

ue
nc

y

Mean = 21885,17
Std. Dev. = 38279,311
N = 380
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XAreaOwned
(NUMBER OF DEKARE LAND OWNED) 

4201.54943Std. Deviation

3334.4104Mean

25000.00Maximum

.00Minimum

307307N

Valid N (listwise) XAreaOwned
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.277Std. Error

2.194StatisticKurtosis

.139Std. Error

1.352StatisticSkewness

17653017.596StatisticVariance

4201.54943StatisticStd. Deviation

239.79509Std. Error

3334.4104StatisticMean

1023664.00StatisticSum

25000.00StatisticMaximum

.00StatisticMinimum

25000.00StatisticRange

307307StatisticN

Valid N (listwise) XAreaOwned
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Mean = 3334,4104
Std. Dev. = 4201,54943
N = 307
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Figures 
from SPSS 
are mirrors 
of figures 
in 
Hamilton
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Questionnaire:

• Hvor viktig er det at myndighetene kontrollerer og 
regulerer bruken av arealer gjennom for eksempel
kontroll av

• av tomtetildelinger (kommunal formidl.)
1 2 3 4 5 6 7 8

• avkjørsler fra hus til vei
1 2 3 4 5 6 7 8

• kjøp og salg av landbrukseiendommer
1 2 3 4 5 6 7 8



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 25

Spring 2010 ©  Erling Berge 2010 49

Importance of public control of sales of agric. estates

100.0100.0380Total

100.01.31.359

98.73.23.2128

95.522.422.4857

73.213.213.2506

60.011.811.8455

48.215.515.5594

32.68.98.9343

23.710.510.5402

13.213.213.2501Valid

Cumulative PercentValid PercentPercentFrequency
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Ved utfylling: sett ring rundt et tall som synes å gi passelig 
uttrykk for viktigheten når 1 betyr svært lite viktig og 7 
særdeles viktig, eller sett et kryss inne i parantesene ( ) som 
står bak svaret du velger
På noen spørsmål kan du krysse av flere svar

87654321Kodeverdi

vet ikkelykkes godt/
svært viktig

lykkes dårlig/
lite viktig

Questionnaire: coding

Dei som ikkje kryssar av noko svar vert koda 9 (ie. missing)
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I. OF P. CNTR. OF SALES OF AGRIC. EST.

100.0380Total

4.517Total

1.359

3.2128Missing

100.095.5363Total

100.023.422.4857

76.613.813.2506

62.812.411.8455

50.416.315.5594

34.29.48.9343

24.811.010.5402

13.813.813.2501Valid

Cumulative PercentValid PercentPercentFrequency
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.255.250Std. Error

-1.267-1.148StatisticKurtosis

.128.125Std. Error

-.234-.171StatisticSkewness

4.4284.897StatisticVariance

2.104352.213StatisticStd. Deviation

.11045.114Std. Error

4.37474.55StatisticMean

1588.001729StatisticSum

7.009StatisticMaximum

1.001StatisticMinimum

6.008StatisticRange

363380StatisticN

Y regressed on 
ControlSalesAgricEstate 

Valid N (listwise) 

I. OF P. CNTR. OF 
SALES OF AGRIC. 

EST.
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Distributions with or without 
missing?

• What difference do the 17 missing 
observations make in the 
– Quantile-Normal plot?

– Box plot?
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Data collection and data quality I
• Questions – techniques for asking questions will not be 

discussed
• Sample

– From sampling to final data matrix: selection of cases, 
refusing to participate, and missing answers on questions

• Variables: Data on cases collected as variable values for 
each case

• Statistics: Data on samples collected as statistics 
(Norwegian: “observatorer” where values are estimated 
for each sample 

• Statistics is also the science of assessing the quality of 
each statistic
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Data collection and data quality II

• What is important for the quality of the 
data?
– Validity of questions asked and reliability of the 

procedures used. 
– Selection bias: A possible causal link between 

missing observations and the topic studied

• What can be done if data are faulty? 
– Not much!
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Writing up a model
• Defining the elements of the model

– Variables, error term, population, and sample

• Defining the relations among the elements of the model
– Sampling procedure, time sequence of the events and 

observations, the functions that links the elements into an 
equation

• Specification of the assumptions stipulated to be true in 
order to use a particular method of estimation
– Relationship to substance theory (specification requirement)
– Distributional characteristics of the error term
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Elements of a model
• Population (who or what are we interested 

in?)
• Sample (simple random sample or exact 

specification of how each case came into the 
sample)

• Variables (characteristics of cases relevant to 
the questions we are investigating)

• Error terms (the sum of impacts from all 
other causes than those explicitly included)
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Relations among elements of a model

• Sampling: biased sample?

• Time sequence of events and observations 
(important to aid causal theory)

• Co-variation (genuine vs spurious co-variation)
– Conclusions about causal impacts require genuine 

co-variation

• Equations and functions
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Bivariat Regression: 
Modelling a population

• Yi = 0 + 1 x1i + i

• i=1,...,n n = # cases in the population

• Y and X must be defined unambiguously, and 
Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression) 
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Bivariat Regression: 
Modelling a sample

• Yi = b0 + b1 x1i + ei

• i=1,...,n n = # cases in the sample

• ei is usually called the residual (mot the error 
term as in the population model)

• Y and X must be defined unambiguously, and 
Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression)
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An example of a bad regression

• The example following contains a series of 
errors. If you present such a regression in 
your term paper you will fail

• Your task is to identify the errors as quickly 
as possible and then never do the same

• Clue:  look again at the distributions of the 
variables above
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Importance of public control of sales of agric. 
Estates

Model Summary

2.213.000.002.047(a) 1

Std. Error of the Estimate
Adjusted R 

SquareR SquareRModel

a  Predictors: (Constant), NUMBER OF DEKAR LAND OWNED
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Importance of public control of sales of agric. Estates

ANOVA(b) 

3791856.050Total

4.8993781851.905Residual

.358(a) .8464.14514.145Regression1

Sig.FMean Squaredf
Sum of 
SquaresModel

a  Predictors: (Constant), NUMBER OF DEKAR LAND OWNED
b  Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Importance of public control of sales of agric. Estates

Coefficients (a) 

.358-.920-.047.000.000
NUMBER OF 
DEKAR LAND 
OWNED

.00035.233.1314.610(Constant) 1

BetaStd. ErrorB

Sig.t
Standardized 
Coefficients

Unstandardized 
CoefficientsModel

a  Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Scatterplot 

0 20000 40000 60000 80000 100000

NUMBER OF DEKAR LAND OWNED

0

2

4

6

8

10

I. O
F P

. C
NT

R.
 O

F S
AL

ES
 O

F A
GR

IC
. E

ST
.



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 36

Spring 2010 ©  Erling Berge 2010 71

Scatterplot with regression line
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Assumptions needed for the use of  
OLS to estimate a regression model

OLS: ordinary least squares (minste kvadrat metoden)

Requirements for OLS estimation of a regression 
model can shortly be summed up as 

• We assume that the linear model is correct (true) with 
independent, and identical normally distributed error 
terms ( ”normal i.i.d. errors”)
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Estimation method: OLS

• Model Yi = b0 + b1 x1i + ei

The observed error (the residual) is

• ei = (Yi - b0 - b1 x1i) 
Squared and summed residual 

• i(ei)2 = i (Yi - b0 - b1 x1i)2

Find b0 and b1 that minimizes the squared sum

Spring 2010 ©  Erling Berge 2010 74

Relationship sample - population (1) 

• A new mathematical operator: E[¤] meaning the expected value of 
[¤] where ¤ stands for some expression containig at least one 
variable or unknown parameter, e.g. 

• E[Yi ]  = E[b0 + b1 x1i + ei ] 

= 0 + 1 x1i

• Note in particular that in our model 
• E[b0] = 0

• E[b1] = 1

• E[ei ] = i
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Relationship sample – population (2) 
• Relationship sample - population is determined by the 

characteristics that the error term has been given  in the 
sampling and observation procedure 

• In a simple random sample with complete observation

E[ i ]for all i, and

var [i] = 2 for all i 

NB: var(¤) is a new mathematical operator meaning 
”the procedure that will find the variance of some 
algebraic expression ”¤”
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Complete observation

• Make it possible to make a completely specified 
model. This means that all variables that 
causally affects the phenomenon we study (Y) 
have been observed, and are included in the 
model equation

• This is practically impossible. Therefore the 
error term will include also unobserved factors 
affecting (Y) 
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Testing hypotheses I

Our method gives the 
correct answer with 
probability  (= 
power of the test)

Error of type I

The test level  is the 
probability of errors 
of type I

We conclude that 
H0 is untrue

Error of type II
(probability 1 – ) 

Our method gives the 
correct answer with 
probability  1 – 

We conclude that 
H0 is true

In reality H0 is 
untrue

In reality H0 is true
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Testing hypotheses II
• A test is always constructed based on the 

assumption that H0 is true
• The construction leads to a 

– Test statistic

• The test statistic is constructed so that is has 
a known probability distribution, usually 
called a 
– Sampling distribution
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Testing hypotheses III

• It is easier to construct tests based on the 
assumption that it is true that a particular test 
statistic is zero, [H0 stating that a parameter is 0], 
than any particular other value

• In regression this means that we assume a 
particular parameter  = 0 in order to evaluate 
how large the probability is for this to be true 
given the sample we have observed
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The p-value of a test

• The p-value of a test gives the estimated 
probability for observing the values we have in 
our sample or values that are even more in accord 
with a conclusion that H0 is untrue; assuming 
that our sample is a simple random sample from 
the population where H0 in reality is true 

• Very low p-values suggest that we cannot believe 
that H0 is true. We conclude that  ≠ 0
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T-test and F-test
 Sums of squares
 TSS = ESS + RSS

 RSS = i(ei)2 = i(Yi - Ŷi)2 distance observed- estimated value

 ESS = i(Ŷi - Ỹ)2 distance estimated value - mean

 TSS = i(Yi - Ỹ)2 distance observed value – mean 

 Test statistic
 t = (b - )/ SEb SE = standard error

 F = [ESS/(K-1)]/[RSS/(n-K)] K = number of model parameters
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Confidence interval for 
• Picking a t- value from the table of the t-

distribution with n-K degrees of freedom makes 
the interval 

< b – t(SEb) , b + t(SEb) >

into a two-tailed test giving a probability of  for 
committing error of type I

• This means that  b – t(SEb) ≤  ≤ b + t(SEb) with 
probability 1 – 
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Coefficient of determination 
Coefficient of determination:

• R2 = ESS/TSS =
– Tells us how large a fraction of the variation around 

the mean we can ”explain by” (attribute to) the 
variables included in the regression (Ŷi = predicted y) 

• In bi-variate regression the coefficient of 
determination equals the coefficient of correlation: 
ryu

2 = syu /sysu

• Co-variance: syu = 

2 2

1 1

ˆ( ) ( )/
n n

i i
i i

Y Y Y Y
 

  

 
1

1
( )

1

n

i i
i

Y Y U U
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Detecting problems in a regression

• Take a second look at the 
example presented above where 
– Y = IMPORTANCE OF PUBLIC CONTROL 

OF SALES OF AGRICULURAL ESTATES 
– X = NUMBER OF DEKAR LAND OWNED  

–Yi = b0 + b1 x1i + ei

What was the problem in this example?



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 43

Fotnote:

• ei indikerer residual (estimert for case nr i i
utvalet)

•  indikerer feilleddet (uobservert for case nr 
i i populasjonen)
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What is wrong in this scatter plot with regression line?
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In general: what can possibly cause problems?

• Omitted variables (specification error)

• Non-linear relationships (specification 
error)

• Non-constant error term 
(heteroskedastisitet)

• Correlation among error terms 
(autocorrelation)

• Non-normal error terms
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Problems also from

• High correlations among included variables 
(multicollinearity)

• High correlation between an included and 
an excluded variable (spurious correlation 
in the model)

• Cases with high influence

• Measurement errors
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Non-normal errors: 

• Regression DO NOT need assumptions about the 
distribution of variables

• But to test hypotheses about the parameters we need to 
assume that the error terms are normally distributed
with the same mean and variance

• If the model is correct (true) and n (number of cases) is 
large the central limit theorem demonstrates that the error 
terms approach the normal distribution 

• But usually a model will be erroneously or 
incompletely specified. Hence we need to inspect and 
test residuals (observed error term) to see if they actually 
are normally distributed
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Residual   analysis
• This is the most important starting point for 

diagnosing a regression analysis 
Useful tools:
• Scatter plot  
• Plot of residual against predicted value
• Histogram 
• Box plot
• Symmetry plot
• Quantil-normal plot
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Power transformations
May solve problems related to

• Curvilinearity in the model

• Outliers 

• Influential cases

• Non-constant variance of the error term 
(heteroscedasticity)

• Non-normal error term 
NB: Power transformations are used to solve a problem. If you 

do not have a problem do not solve it. 
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Power transformations (see H:17-22)

Y* : read 
“transformed Y”

(transforming Y to Y*)

• Y* = Yq q>0

• Y* = ln[Y] q=0

• Y* = - [Yq ] q<0

Inverse 
transformation

(transforming Y* to Y)

• Y = [Y*]1/q q>0

• Y = exp[Y*] q=0

• Y = [- Y* ]1/q q<0 
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Power transformations: consequences

• X* = Xq

– q  > 1   increases the weight of the right hand tail relative to the left 
hand tail 

– q  = 1   produces identity

– q  < 1   reduces the weight of the right hand tail relative to the left 
hand tail 

• If Y* = ln(Y) the regression coefficient of an interval scale 
variable X can be interpreted as % change in Y per unit 
change in X

E.g. if       ln(Y)= b0 + b1 x + e 

b1 can be interpreted as % change in Y pr unit change in X
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Power transformed 
X = NUMBER OF DEKAR LAND OWNED
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Does power transformation help?

0.3 power-transformation gives lighter tails and no outliers 
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Box plot of the residual shows
approximate symmetry and no outliers

Unstandardized Residual
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Curvilinear regression

• The example above used the variable  
”Point3powerAreaowned”, or 0.3 power of number of 
dekar land owned:

• Point3powerAreaowned = (NUMBER OF DEKAR LAND OWNED)0.3

The model estimated is thus 

yi = b0 + b1 (xi ) + ei

yi = b0 + b1 (Point3powerAreaownedi ) + ei

ŷi = 4.524 + 0.010*(NUMBER OF DEKAR LAND OWNEDi)
0.3
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Use of power 
transformed 
variables means 
that the 
regression is 
curvilinear
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Summary
• In bivariate regression the OLS method finds the ”best” LINE or 

CURVE in a two dimensional scatter plot

• Scatter-plot and analysis of residuals are tools for diagnosing 
problems in the regression

• Transformations are a general tool helping to mitigate several types 
of problems, such as 
– Curvilinearity

– Heteroscedasticity

– Non-normal distributions of residuals

– Case with too high influence

• Regression with transformed variables are always curvilinear. 
Results can most easily be interpreted by means of graphs
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SPSS printout vs the book (see p16)
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Reading printout from SPSS (1)

Descriptive Statistics Mean Std. Deviation1 N2

I. OF P. CNTR. OF SALES OF 
AGRIC. EST.

4.61 2.185 307

Point3powerAreaowned 8.5032 5.31834 307

M
o
d
el R

R 
Squa
re3

Adjusted 
R Square4

Std. Error 
of the 

Estimate5

Change Statistics

R Square 
Change F Change df1 df2

Sig. F 
Change

1 .024(a) .001 -.003 2.188 .001 .182 1 305 .670

a  Predictors: (Constant), Point3powerAreaowned
b  Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST. 
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Footnotes to the table above (1)
1. Standard deviation of the mean

2. Number of cases used in the analysis

3. Coefficient of determination

4. The adjusted coefficient of determination (see 
Hamilton page 41)

5. Standard deviation of the residual

se = SQRT ( RSS/(n-K)), 

where SQRT (*) = square root of (*)
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Reading printout from SPSS (2)

Model
Sum 

of Squares3 df
Mean

Square F1 Sig.2

1 Regression
.870 1 .870 .182

.670(a)

Residual
1460.224 305 4.788

Total 1461.094 306

•Sums of squares:   TSS = ESS + RSS

•RSS = i(ei)2 = i(Yi - Ŷi)2 : sum of squared (distance observed – estimated value)

•Mean Square = RSS / df For RSS it is known that df=n-K 

K equals number of parameters estimated in the model (b0 og b1)

Here we have n=307 and K=2, hence Df  = 305

Fotnote:
• 1 F-observatoren for nullhypotesa beta1 = 0  (sjå Hamilton side 

45)

• 2 p-verdien for F-observatoren: dvs sannsynet for å finne ein så 
stor eller større F-verdi gitt at nullypotesa er rett

• 3 Kvadratsummar

– TSS = ESS + RSS

– RSS = i(ei)2 = i(Yi - Ŷi)2 avstand observert – estimert 
verdi

– ESS = i(Ŷi - Ỹ)2 avstand estimert verdi – gjennomsnitt 

– TSS = i(Yi - Ỹ)2 avstand observert verdi – gjennomsnitt 
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Footnotes to the table above (2)
1. F-statistic for the null hypothesis 1 = 0  (see 

Hamilton p45)

2. p-value of the F-statistic: the probability of finding a 
F-value this large or  larger assuming that the null  
hypothesis is correct

3. Sums of squares
1. TSS = ESS + RSS

2. RSS = i(ei)2 = i(Yi - Ŷi)2 distance observed value – estimated 
value

3. ESS = i(Ŷi - Ỹ)2 distance estimated value – mean 

4. TSS = i(Yi - Ỹ)2 distance observed value – mean 
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Reading printout from SPSS (3)

M
o
d
e
l

Unstandardized 
Coefficients

Standa-
rdized 

Coeffic
ients

t4 Sig.5

95% Confidence 
Interval for B  

B1 Std. Error2 Beta3

Lower 
Boun

d

Upper 
Boun

d

1 (Constant)
4.524 .236 19.187 .000 4.060 4.988

Point3-
powerA

rea-
owned

.010 .024 .024 .426 .670 -.036 .056
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Footnotes to the table above (3)
1. Estimates of the regression coefficients b0 og b1

2. Standard error of the estimates of b0 og b1

3. Standardized regression coefficients: b1
st = 

b1*(sx/sy)  see Hamilton pp38-40

4. t-statistic for the null hypothesis beta1 = 0  (see 
Hamilton p44)

5. p-value of the t-statistic: the probability of 
finding a t-value this large or larger assuming 
that the null hypothesis is correct
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Multiple regression

Hamilton Ch 3 p65-101 
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Recall from first lecture: 
Bivariate regression: Modelling a sample

• Yi = b0 + b1 x1i + ei

– i=1,...,n n = # cases in the sample

• ei is usually called the residual (not the error term as in the 
population model)

• Y and X must be defined unambiguously, and Y must be interval 
scale (or ratio scale) in ordinary regression (OLS regression)
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Recall from first lecture: 
Bivariate regression: Modelling a population

• Yi = 0 + 1 x1i + i

• i=1,...,n n = # cases in the population 

• i is the error term for case no i

• Y and X must be defined unambiguously, and 
Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression) 
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Summary on bivariate regression
• In bivariate regression the OLS method finds the ”best” LINE or 

CURVE in a two dimensional scatter plot
• Best is defined as the “a” and “b” that minimizes the sum of squared 

deviations between the line/ curve and observed variable values
• Scatter-plot and analysis of residuals are tools for diagnosing 

problems in the regression
• Transformation (by powers) is a general tool helping to mitigate several 

types of problems, such as 
– Curvilinearity
– Heteroscedasticity
– Non-normal distributions of residuals
– Cases with too high influence

• Regression with (power) transformed variables are always curvilinear. 
Results can most easily be interpreted by means of graphs
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Multiple regression: model (1)
• The goal of multiple regression is to find the net 

impact of one variable controlled for the impact 
of all other variables

• Let K= number of parameters in the model (this means 
that K-1 is the number of variables)

• Then the population model can be written
• yi = 0 + 1 xi1 + 2 xi2 + 3 xi3 +...+ K-1 xi,K-1 + i
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Multiple regression: model (2)
• This can also be written

yi = E[yi] + i , 

this means that 

• E[yi] is read as “the expected value of yi” 

• E[yi] = 0 + 1 xi1 + 2 xi2 + 3 xi3 +...+ K-1 xi,K-1
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Multiple regression: model (3)
• We will find the OLS estimates of the model 

parameters as the b-values in

ŷi = b0 + b1 xi1 + b2 xi2 + b3 xi3 +...+ bK-1 xi,K-1 

(ŷi is read as ”estimated” or ”predicted” value of yi )

that minimizes the squared sum of the residuals  
2 2

1 1

( )
n n

i i
i i

RSS Y Y e
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Estimation methods
• The OLS method means that parameters are found by 

minimizing RSS (residual sum of squares)

• But this is not the only method for finding suitable b-
values. Two alternatives are:
– WLS: Weighted least squares

– ML: maximum likelihood 
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More on testing hypotheses

• We can draw many samples from a population
• In every new sample we can estimate new values (a new bk-

value) of the same population regression parameter (k) 
• If we make a histogram of the many estimates of e.g. bk we 

will see that bk has a distribution. This distribution is called 
the sampling distribution of bk

• Different types of parameters have different types of 
sampling distributions

• Regression parameters (OLS regression bk) have t-
distributions (Student’s t-distribution)
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Sampling distribution of the regression parameter b:  

E[b]= 

+b
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On partial effects (1)
• Example with 2 variables

• If we estimate a model with 2 x-variables

yi = b0 + b1 xi1 + b2 xi2 + ei

it will in principle involve 3 different correlations:
• Between y and x1

• Between y and x2 

• Between x1 and x2 
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On partial effects (2)
• This might have been represented by 3 different bivariate regressions 

where the third variable was kept constant 

(1) y = ayIx1 + byIx1x1 + eyIx1 x2 constant

(2) y = ayIx2 + byIx2x2 + eyIx2 x1 constant

(3) x1= ax1Ix2 + bx1Ix2x2 + ex1Ix2 y  constant

the index ”yIx1” is read ”from the regression of y on x1”

• Equations (2) and (3) can be rewritten as:
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On partial effects (3)
(2) eyIx2 = y  - (ayIx2 + byIx2x2 ) 

(3) ex1Ix2 = x1 - (ax1Ix2 + bx1Ix2x2 )

We may interpret this as a removal of the effect of  x2 from y 
and from x1

We also see that eyIx2 and ex1Ix2 become the new y and x1
variables where the effect of x2 has been removed 
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On partial effects (4)

• If we, based on this, make a new regression 

êyIx2 =  a + b ex1Ix2

we find that 
a = 0 

b = b1 from the regression 

yi = b0 + b1 xi1 + b2 xi2 + ei

• b1 is in other words the effect of x1 on y after we 
have removed the effect of x2
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Experiments and partial effects
• Experiments investigate the causal connection 

between two variables controlled for all other causal 
impacts

• Multiple regression is a kind of half-way replication 
of experiments – the next best solution – and is a 
close relative of quasi-experimental research designs
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Partial effects
A leverage plot for y and xk is a plot where 

• y-axis is the residual from the regression of y on all 
x-variables except xk , and 

• x-axis is the residual from regression of xk on all 
the other x-variables

The regression line in such a plot will always go 
through y=0 and will have a slope coefficient equal 
to bk

Spring 2010 ©  Erling Berge 2010 128

An example with 2 independent variables

Table 3.1 Dependent: 
Summer 1981 Water Use B Std. Error t Sig.

(Constant) 203.822 94.361 2.160 .031

Income in Thousands 20.545 3.383 6.072 .000

Summer 1980 Water Use .593 .025 23.679 .000

Table 2.2 Dependent: 
Summer 1981 Water Use B Std. Error t Sig. 

(Constant) 1201.124 123.325 9.740 .000

Income in Thousands 47.549 4.652 10.221 .000

From the table 2.2 (p46) and 3.1 (p68) in Hamilton. In the tables in the book the constant is on 
the last line. SPSS put it on the first line. 
Question: What does it mean that the coefficient of income declines when we add a new 
variable?
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Fotnote:
• Tolking av koeffisientane i tabell 3.1

• Konstantverdien viser gjennomsnittleg vassforbruk 
til ein person etter at verknaden av inntekta og 
vassforbruket året før er kontrollert for og sett til 
null.

• regresjonskoeffisienten for inntekt på 20,5 tyder at 
predikert vassforbruk når vi kontrollerer for 
vassforbruk i tidlegare år vil auke med 20,5 
kubikkfot vatn for kvar tusen dollar inntekta aukar. 
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On the addition of new variables
• It is not common that existing theory will give precise prescriptions for 

what variables to include in a model. Usually there is an element of trial 
and error in developing a model

• When new variables are added to a model several things happen
– The explanatory force increase: R2 increase, but will the increase be significant?

– The coefficient of the regression shows the effect on y. Is this effect significantly 
different from 0? 

– If the coefficient is significantly different from 0, is it also so big that it is of 
substantial interest?

– Spurious coefficients can decline. Do the new variable change the interpretation of 
the effect of the other variables?
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Parsimony
• Parsimony is what might be called an aesthetic criterion of 

a good model. We want to explain as much as possible of 
the variation in y by means of as few variables as possible

• The adjusted coefficient of determination, Adjusted R2, is 
based on parsimony in the sense that it takes into 
consideration the complexity of the data relative to the 
complexity of the model by the difference between n and 
K 
(n-K is the degrees of freedom in the residual,  

n = number of observations, K = number of estimated parameters) 
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Irrelevant variable
• Including irrelevant variables

– A variable is irrelevant if the real effect () is 0; or more 
pragmatically, if it is so small that it has no substantive interest 

– Inclusion of an irrelevant variable makes the model 
unnecessarily complex and will have the consequence that 
coefficient estimates on all variables have larger variance 
(coefficients varies more form sample to sample) 

• Including an irrelevant variable in OLS model estimation is 
probably the least damaging error we can do 
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Relevant variable
• A variable is relevant if 

– Its real effect () is significantly different from 0, and 

– Large enough to have substantive interest, and 

– It is correlated with other included x-variables

• If we exclude a relevant variable all results from our regression will 
be unreliable. The model is unrealistically simple 

• Not including a relevant variable is the most damaging 
error we can do. But consider requirement 2 and 3. This 
makes it a lot easier to avoid this problem.  
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Sample specific results?
• Choice of variables is a trade-off among risks. Which risk is 

worse depends on the purpose of the study and the strength of 
relations

• With a test level of 0.05 one may easily find sample specific 
results. In about 5% of all samples a coefficient that show up 
as not significantly different from 0 will in ”reality” be 
different from 0 ( ≠ 0) and vice versa for those we find to be 
significantly different from 0 mayin reality be 0

• The best defence against this is the theoretical argument for 
finding an effect different from 0
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Hamilton (s74) example
yi Post shortage water use (1981)

xi1 Household income, in thousands of dollars

xi2 Pre-shortage water use, in cubic feet (1980)

xi3 Education of household head, in years

xi4 Retirement (coded 1 if household head is retired and 0 otherwise)

xi5 Number of people living in household at time of water shortage 
(summer 1981)

xi6 Change in number of people, summer 1981 minus summer 1980 
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Table 3.2 (Hamilton p74)
Dependent Variable: 
Summer 1981 Water Use B Std. Error t Sig.

(Constant) 242.220 206.864 1.171 .242

Income in Thousands 20.967 3.464 6.053 .000

Summer 1980 Water Use .492 .026 18.671 .000

Education in Years -41.866 13.220 -3.167 .002

Head of house retired? 189.184 95.021 1.991 .047

# of People Resident, 1981 248.197 28.725 8.641 .000

Increase in # of People 96.454 80.519 1.198 .232

How do we interpret the coefficient of ”Increase in # of People” ?

What leads to less water use after the crisis?

Beta

.184

.584

-.087

.058

.277

.031



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 69

Fotnote: 
• I Hamilton sine tabellar er det ei kolonne som gir gjennomsnittet av 

variablane. Den må vi i SPSS leggje til sjølve om vi ønskjer den. 

• Samanlikna med 2-variabel eksempelet ovanfor ser vi

• Determinasjonskoeffesienten har auka frå 0.6138 til 0.6773

• Koeffisientane for inntekt og vassforbruk1980 har ikkje endra seg 
substansielt

• Koeffisientane utanom konstanten og auke i tal personar er signifikant 
ulik 0 og store nok til at dei har substansiell interesse

• Konstantleddet må vi alltid ha med

• Kva skal vi gjere med ” Increase in # of People” ? (droppe eller ikkje)

• Gitt førkrisenivå i vassforbruk vil etterkriseforbruk minke der inntekta 
går ned, utdanninga går opp og hovudpersonen i hushaldet ikkje er 
pensjonist. 
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Standardized coefficients

• Standardized regression coefficients (beta-weights, or 
path coefficients)
bk

s = bk(sk/sy)  (varies between -1 and +1)

• Predicted standard score of yi (ẑiy) = 0.18zi1 + 0.58zi2

– 0.09zi3 + 0.06zi4 + 0.28zi5 + 0.03zi6

• Standardized variables (z-scores) have standard 
deviation as unit of measurement and a mean of 0

 i
iX

X

X X
Z

s
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Fotnote: 
• Ein bør vere varsam med å nytte beta-

vektene til å samanlikne effekten av ulike 
variablar. Når ein gjer det må ein akseptere 
at standardavvik pr standardavvik er ei 
rimeleg måleeining for effekt. 

• Substansiell tolking av effektane vil ofte 
vere betre.

• Slike koeffisientar kan ikkje nyttast til 
samanlikning på tvers av utval.
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t-test
• The difference between the observed coefficient (bk) and the 

unobserved coefficient (k) standardized by the standard deviation 
of the observed coefficient (SEbk

) will usually be very close to zero 
if the observed bk is close to the population value. This means that if 
we in the formula 

• t = (bk - k)/ SEbk substitutes k = 0 (H0) and find that ”t” is small we 
will believe that the population value k in reality equals 0 (we 
cannot refute H0) 

• How big ”t” has to be before we stop believing that k = 0 we can 
find from knowing the sampling distribution of bk and SEbk
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”t” has a sampling distribution called the t-distribution The t-distribution varies with 
the number of degrees of freedom (n-K) and is listed according to level of 
significance 
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Confidence interval for  (1)

• We have defined t = (bk - k)/ SEbk This means that 
• t * (SEbk ) = bk – k or k = bk – t * (SEbk ) where t follows 

the t distribution with n-K degrees of freedom
• Chosing a t-value from the table of the t-distribution with 

n-K degrees of freedom then it is true that 
• Pr{bk – t * (SEbk ) < k < bk + t * (SEbk ) } = 1 - 
• Then if k= bk is correct, a two tailed test will have a 

probability of  to reject H0 : k= 0 when H0 in reality is 
correct (type I error)
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Fotnote: 

• Det kan også lagast konfidensintervall for 
estimert y ( E[y] ) anten for regresjonslina 
eller for einskild verdiar for eit case (sjå 
side 79)
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Confidence interval for 
• This means that there is a probability of  that k

in reality is outside the interval
< bk – t(SEbk

) , bk + t(SEbk
) >

• This is equivalent to saying that
bk – t(SEbk

) ≤ k ≤ bk + t(SEbk
)

is correct with probability 1 – (our confidence of 
this result is 1 -  )

• Pr{bk – t*(SEbk) < k < bk + t*(SEbk) } = 1 - 
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F-test: big model against small (1)
Define: 

   

 

K H K

H
n K

K

RSS RSS

HF
RSS

n K











RSS[*] = residual sum of squares with index 
[*] where * stands for number of 
parameters in the model

Fotnote:

• H er lik skilnaden i talet på parametrar
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F-test: big model against small (2)

• Big model: RSS [K]

• Small model: RSS [K-H]

• H is the difference in number of parameters 
in the two models 

FH
n-K will have a sampling distribution 

called the F-distribution with 

H and n-K degrees of freedom 
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Example (Hamilton table 3.1 and 3.2)

Large model 
Table 3.2 Sum of Squares df Mean Square F Sig.

Regression 740477522.059 K - 1 =     6 123412920.343 171.076 .000(a)

Residual 352761187.618 n - K = 489 721393.022

Total 1093238709.677 n - 1 = 495

Small model
Table 3.1 Sum of Squares df Mean Square F Sig.

Regression 
(Model) 
(Explained)

671025350.237 2 335512675.119 391.763 .000(a)

Residual 422213359.440 493 856416.551

Total 1093238709.677 495

Test if the big model (7 parameters) is better than the small (3 parameters)
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Notes to the example
• K = number of parameters of the big model (6 variables plus 

constant) = 7 

• H = K – [number of parameters in the small model (2 variables plus 
constant)] = 7 – 3 = 4

• RSS[K-H] = 422213359.440

• RSS[K] = 352761187.618

• n = 496 

• n – K = 496 – 7 = 489

• (RSS[K-H] – RSS{K})/H = (422213359.440 - 352761187.618)/4 = 
17363042.9555

• RSS[K] /(n-K) = 352761187.618/489 = 721393.0217

• F{H, n-K} = 17363042.9555 / 721393.0217 = 24.0688 
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Testing all parameters in one test
• If the big model has K parameters and we let the small 

model be as small as possible with only 1 parameter (the 
constant = the mean) our test will have H=K-1. Inserting 
this into our formula we have

   

 

1

1 1
K

K
n K

K

RSS RSS

KF
RSS

n K










This is the F-value we find in the ANOVA tables from SPSS
[note: {RSS[1] - RSS[K]} = ESS (explained sum of squares) ]
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Multicollinearity (1)
• Multicollinearity only involves the x-variables, not y, and is 

about linear relationships between two or more x-variables

• If there is a perfect correlation between 2 explanatory 

variables, e.g. x and w (rxw = 1) the multiple regression 

model breaks down

• The same will happen if there is perfect correlation between 
two groups of x-variables
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Multicollinearity (2)
• Perfect correlation is rarely a practical problem
• But high correlations between different x-variables or between 

groups of x-variables will make estimates of their effect 
unreliable. 

• The effects of two highly correlated variables (like x and x2) 
may be arbitrarily assigned to one, the other, or both

• Individual regression coefficients will have large standard 
deviations and t-tests will practically speaking have no interest 
whatsoever

• F-tests of groups of variables will not be affected by this
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Search strategies

• There are methods for automatic searches for explanatory 
variables in a large set of data

• The best advice to give on this is to avoid using it
• One problem is that the p-values of the tests from such 

searches are wrong and too ”kind”. The the probability of 
making Type I errors increase with the number of tests

• This difficulty is called “the problem of multiple 
comparisons”

• Another problem is that such searches do not work well if 
the variables are highly correlated
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Dummy variables: group differences 

• Dichotomous variables taking the values of 0 or 1 are 
called dummy variables, or more generally binary 
variables

• In the example in table 3.2 (p74) xi4 (Head of house 
retired?) is a dummy variable 

• First put into the equation xi4 = 1 then xi4 = 0 
yi = 242 + 21xi1 + 0.49xi2 - 42xi3 + 189xi4 + 248xi5 + 96xi6 og 

• Explain what the two equations tell us
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Fotnote: 
• For X4 = 1 får vi 

• yi = 431 + 21xi1 + 0.49xi2 - 42xi3 + 248xi5 + 
96xi6 

• For X4 = 0 får vi 

• yi = 242 + 21xi1 + 0.49xi2 - 42xi3 + 248xi5 + 
96xi6

• Skilnaden ligg i ulik skjeringspunkt med y-
aksen
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Interaction
• There is interaction between two variables 

if the effect of one variable changes or 
varies depending on the value of the other 
variable

� �X Y

W
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Interaction effects in regression (1)
• If we do a non-linear transformation of y all estimated effects 

will implicitly be interaction effects

• Simple additive interaction effects can be included in a linear 
model by means of product terms where two x-variables are 
multiplied 

• ŷi = b0 + b1xi + b2wi + b3xiwi

• Conditional effect plots will be able to illustrate what 
interaction means

Fotnote: 

• Sett inn for X=0,1,2,3, ...
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Interaction effects in regression (2)

• An interaction effect involving x and w can 
be included in a regression model by means 
of an auxiliary variable equal to the product 
of the two variables, i.e.

• Auxiliary variable H=x*w 

• yi = b0 + b1*xi + b2*wi + b3*Hi + ei 

• yi = b0 + b1*xi + b2*wi + b3*xi *wi + ei

Fotnote: 

• Rekn ut: 

• Sett inn for w=0,1,2,3, ... Osv

• Og finn koeffisienten for x
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Example from Hamilton(p85-91)
Let 

• y = natural logarithm of chloride concentration

• x = depth of well (1=deep, 0=shallow)

• w = natural logarithm of distance from road

• xw = interaction term between distance and depth 
(product x*w). Then

• ŷi = b0 + b1xi + b2wi + b3xiwi

First take a look at the simple models without interaction
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Figures 3.3 and 3.4 (Hamilton p85-86)

Dependent Variable:
lnChlorideConcentra B Std. Error Beta t Sig.

(Constant) 3.775 .429 8.801 .000

x= BEDROCK OR SHALLOW WELL? -.706 .477 -.205 -1.479 .145

Dependent Variable:
lnChlorideConcentra B Std. Error Beta t Sig.

(Constant) 4.210 .961 4.381 .000

w= lnDistanceFromRoad -.091 .180 -.071 -.506 .615

x= BEDROCK OR SHALLOW WELL? -.697 .481 -.202 -1.449 .154

Figure 3.3 is based on

Figure 3.4 is based on 
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Fotnote: 
• y = naturleg logaritme av klorid konsentrasjon

• x = djupna av brønnen (1=djup, 0=grunn)

• w = naturleg logaritme av avstand frå vei

• xw = interaksjonsledd mellom avstand og djupn 
(produktet x*w)

• Tabell 3.3 med berre x inkludert gir y-gjennomsnittet 
for dei to typane brønnar (figur 3.3 neste side)

• Tabell 3.4 med x og w inkludert gir oss samanhengen 
mellom avstand frå vei og saltureining for dei to 
typane brønnar (figur 3.4 nedanfor)
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Figure 3.3
ŷi = 3.78 - .71xi

Let 

xi = 1 (deep) 

and 

xi = 0 (shallow)
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Fotnote:

• Frå tabell 3.3  ŷi = 3.78 - .71xi

• Sett inn for xi = 1 (djup brønn) og xi = 0 
(grunn brønn)
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Figure 3.4
ŷi = 4.21 -.70xi -.09wi

Let 
xi = 1 (deep) 
and 
xi = 0 (shallow)
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Fotnote:

• Frå tabell 3.4    ŷi = 4.21 -.70xi -.09wi

• Sett inn for xi = 1 (djup brønn) og xi = 0 
(grunn brønn)
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Figures 3.5 and 3.6 (Hamilton p89-91)
Take note of significance changes

Dependent Variable: lnChlorideConcentra B Std. Error Beta t Sig.

(Constant) 3.666 .905 4.050 .000

w= lnDistanceFromRoad -.029 .202 -.022 -.144 .886

x*w= lnDroadDeep -.081 .099 -.128 -.819 .417

Also see Table 3.4 in Hamilton p90
Dependent Variable: lnChlorideConcentra B Std. Error Beta t Sig. 

(Constant) 9.073 1.879 4.828 .000

w= lnDistanceFromRoad -1.109 .384 -.862 -2.886 .006

x= BEDROCK OR SHALLOW WELL? -6.717 2.095 -1.948 -3.207 .002

x*w= lnDroadDeep 1.256 .427 1.979 2.942 .005

Figure 3.6 is based on 

Figure 3.5 is based on
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Fotnote: 
• y = naturleg logaritme av klorid 

konsetrasjon

• x = djupna av brønnen (1=djup, 0=grunn)

• w = naturleg logaritme av avstand frå vei

• xw = interaksjonsledd mellom avstand og 
djupn (produktet x*w)

• Legg merke til korleis signifikansnivået
endrar seg for dei ulike modellane. 
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Figure 3.5 

ŷi = 3.67 - .03wi -.08xiwi

For
xi = 1 (deep) 

ŷi = 3.67 - .11wi

and for
xi = 0 (shallow) 

ŷi = 3.67 - .03wi
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Fotnote: 
• Fra tabell 3.5     ŷi = 3.67 - .03wi -.08xiwi 

• Sett inn for xi = 1 (djup brønn) og xi = 0 (grunn brønn)

• For xi = 1 (djupe brønnar) vert samanhengen ureining og 
avstand

• ŷi = 3.67 - .11wi

• For xi = 0 (grunne brønnar) vert samanhengen ureining og 
avstand

• ŷi = 3.67 - .03wi

• Test av koeffisienten for interaksjonsleddet vil her teste om vi 
har ulike vinkelkoeffisient for dei to typane brønnar
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Figure 3.6   ŷi = 9.07 -6.72xi -1.11wi + 1.26xiwi

For
xi = 1 (deep) 

ŷi = 2.35 + .15wi

and for
xi = 0 (shallow)

ŷi = 9.07 - 1.11wi
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Fotnote:
• Fra tabell 3.6    ŷi = 9.07 -6.72xi -1.11wi + 1.26xiwi

• Sett inn for xi = 1 (djup brønn) og xi = 0 (grunn brønn)

• For xi = 1 (djupe brønnar) vert samanhengen ureining 
og avstand

• ŷi = 2.35 + .15wi

• For xi = 0 (grunne brønnar) vert samanhengen ureining 
og avstand

• ŷi = 9.07 - 1.11wi

• NB: Legg merke til korleis interaksjonsleddet totalt 
endrar samanhengane mellom variablane
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Multicollinearity
• Taking all three variables, x, w, and x*w will 

introduce an element of multicollinearity. This 
means that we cannot trust tests of single 
coefficients

• But as shown in the previous example one can not 
drop any one of the variables without dropping a 
relevant variable

• F-test of e.g. w and z*w simultaneously 
circumvents the test problem, and with some 
experimentation with different models one may 
see if excluding w or x*w changes the relations 
substantially
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Testing in the presence of 
multicollinearity

• To specify a model correctly we may need 
to add terms containing variables already in 
the equation. This applies to
– Interaction terms

– Curvilinear relations (use of squared variables 
in addition to the one present)

• Let us take a look at curvilinear relations: 
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Test for Curvilinear Relations

• Testing for curvilinearity in “age”
– Set age squared = “age2”

• Remember:
– Age is one substance variable that may be represented either by 

one technical variable or by two technical variables (somewhat 
like one variable being represented by different ways of coding)

• Substance variable Age is represented by 
– age

or
– age + age2
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Testing for curvilinearity
• Model 0

– (some variables)

• Model 1
– (some variables) + age

• Model 2
– (some variables) + age + age2

• In model 1 the impact of Age is tested by the t-test and the 
corresponding p-value (there is no difference between the 
substance variable and its technical representation) 
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Testing  for curvilinearity 2
• In model 1 the test may conclude that Age does not 

contribute to the model. If so we go to model 2
• In model 2 the testing of the impact of the substance 

variable Age (represented by age and age2) is done by an F-
test of Model 2 against Model 0 

• The F-test may conclude that Age does not contribute to the 
model. Then we drop both age and age2.

• The F-test may conclude that Age (represented by age and 
age2) contributes significantly to the model. Then we keep 
both age and age2
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Testing  for curvilinearity 3
• In model 1 the test may conclude that Age does 

contribute to the model. If so we may still go to 
Model 2

• If either the t-test of model 1, or the F-test of 
model 2, or both show that Age contributes 
significantly to the model, there are several 
possibilities
– T-test significant, F-test not significant: drop age2, keep 

age
– T-test significant, F-test significant, p-value of age is 

unchanged or higher (compared to model 1) while p-
value of age2 is clearly insignificant: drop age2, keep 
age
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Testing  for curvilinearity 4

• (continued)
– T-test significant, F-test significant, p-value of age improves 

(compared to model 1): keep age2 no matter what p-value for age2 is 
– T-test significant, F-test significant, p-value of age shows no 

significance (compared to model 1) while p-value of age2 shows 
clear significance: keep age2 no matter what p-value for age is

– T-test significant, F-test significant, p-value of both age and age2 
show no significance but are fairly close. Then the F-test decides. 
Keep age2. 

• And remember: age2 never appears alone, always with age
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Nominal scale variables
• Can be included in regression models by the use of new 

auxiliary variables: one for each category of the nominal 
scale variable. J categories implies H(j), j=1,…,J new 
auxiliary variables

• If the dependent variable is interval scale and the the only 
independent variable is nominal scale analysis of variance 
(ANOVA) is the most common approach to analysis

• By introducing auxiliary variables the same type of analysis 
can be done in a regression model

Spring 2010 ©  Erling Berge 2010 182

Analysis of variance - ANOVA
• Analysing an interval scale dependent variable 

with one or more nominal scale independent 
variables, often called factors
– One way ANOVA uses one nominal scale variable

– Two way ANOVA uses two nominal scale variable

– And so on …

• Tests of differences between groups are based on 
an evaluation of whether the variation within a 
group (defined by the ”factors”) is large compared 
to the variation between groups



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 92

Spring 2010 ©  Erling Berge 2010 183

Nominal scale variables in regression (1)

• If the nominal scale has J categories a maximum 
of J-1 auxiliary variables can enter the regression

If H(j), j=1, ... , J-1 are included H(J) have to be 
excluded

• The excluded auxiliary variable is called the 
reference category and is the most important 
category in the interpretation of the results from 
the regression

Fotnote: 
• Dersom vi inkluderer alle vil vi få perfekt 

multikollinearitet sidan den siste 
hjelpevariabelen alltids vil kunne reknast ut 
verdien av på grunnlag av kunnskap om dei 
andre:

• H(J) = 1 – H(1) - H(2) - ... - H(j-1)  

• berre når alle dei andre er 0 vil H(J) kunne 
bli 1
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Nominal scale variables in regression (2)

Dummy coding of a nominal scale variable
• The auxiliary variable H(j) for a person i is 

coded 1 if the person belongs to category j on 
the nominal scale variable, it is coded 0 if the 
person do not belong to category j

• NB: The mean of a dummy coded variable is the 
proportion in the sample with value 1 (i.e. that 
belongs in the category)

Fotnote: 

• Skrive med matematisk notasjon:

• H(j) = 1 iff i ”inneholdt i” j 

• = 0 elles
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Nominal scale variables in regression (3)
The reference category

(the excluded auxiliary variable)

• The chosen reference category ought to be 
large and clearly defined 

• The estimated effect of an included 
auxiliary variable measures the effect of 
being in the included category relative to 
being in the reference category 

Spring 2010 ©  Erling Berge 2010 188

Nominal scale variables in regression (4)

• This means that the regression parameter for an 
included dummy coded auxiliary variable tells us 
about additions or subtractions from the expected 
Y-value  a person gets by being in this category 
rather than in the reference category

• When all auxiliary variables are zero the effect of 
being in the reference category is included in the 
constant
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Nominal scale variables in regression (5)

Testing I

• Testing if a regression coefficient for an 
included auxiliary variable equals 0 answers 
the question whether the persons in this 
group have a mean Y value different from 
the mean value of the persons in the 
reference category
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Nominal scale variables in regression (6)

Testing II

• Testing whether a Nominal scale variable contributes 
significantly to a regression model have to be done by 
testing if all auxiliary variables in sum contributes 
significantly to the regression 

• For this we use the F-test as explained above. See 
formula 3.28 in Hamilton (p80)
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Nominal scale variables in regression (7)

Interaction

• When dummy coded nominal scale 
variables are entered into an interaction all 
included auxiliary variables have to be 
multiplied with the variable suspected of 
interacting with it
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On terminology (1)
• Dummy coding of nominal scale variables are 

called different names in different textbooks. For 
example it is

1. Dummy coding in Hamilton, Hardy, and Weisberg

2. Indicator coding in Menard (and also Weisberg)

3. Reference coding or partial method in 
Hosmer&Lemeshow
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On terminology (2)
• To reproduce results from the analysis of 

variance (ANOVA) by means of regression 
techniques Hamilton introduces a coding of the 
auxiliary variables he calls effect coding. Other 
authors call it differently: 

– It is called effect coding by Hardy
– It is called deviance coding by Menard
– It is called the marginal method or deviance method 

by Hosmer&Lemeshow

• To highlight particular group comparisons Hardy 
(Ch5) introduces a coding scheme called 
contrast coding 
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Ordinal scale variables
• Can be included as an interval scale if the 

unobserved theoretical dimension is continuous and 
distance measures seems reasonable

• Also it may be used directly as dependent variable if 
the program allows ordinal dependent variables
– In that case parameters are estimated for every level 

above the lowest as cumulative effects relative to the 
lowest level 
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Nominal scale variables 

TYPE OF 
GROUP Frequency Percent

Valid 
Percent

Cumulative 
Percent

POLITICIAN
48 12.6 12.6 12.6

FARMER
132 34.7 34.7 47.4

PEOPLE not 
Farmers or Pol

200 52.6 52.6 100.0

Total 380 100.0 100.0
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Example of dummy coding

Nominal scale Auxiliar
y

variables H (*)

Type of group Code N H(1)=
Pol

H(2)=
Farmer

H(3)=
People

Politicians 1 48 1 0 0

Farmers 2 132 0 1 0

Other People 3 200 0 0 1 Referenc
e 
categoryA variable with 3 categories leads to 2 dummy coded  variables 

in a regression with the third used as reference
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Example of effect coding
Nominal scala Auxiliary

variable

Type of group Code N H(1)=
Pol

H(2)=
Farmer

Politicians 1 48 1 0

Farmers 2 132 0 1

Other People 3 200 -1 -1 Reference 
category

In effect coding the reference category is coded -1. Effect coding 
makes it possible to duplicate all F-tests of ordinary ANOVA 
analyses. 
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Contrast coding
• Is used to present just those comparisons 

that are of the highest theoretical interest
• Contrast coding requires

– That with J categories there have to be J-1 
contrasts

– The values of the codes on each auxiliary 
variable have to sum to 0

– The values of the codes on any two auxiliary 
variables have to be orthogonal (their vector 
product has to be 0)



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 100

Fotnote: 

• Kontrastkoding er nært beslekta med 
effektkoding. Ein inkluderer fleire 
kategoriar i ei samanlikning ved å la 
vektene for kvar gruppe kategoriar som skal 
samanliknast summere seg til 1, -1 for den 
eine og +1 for den andre gruppa (jfr side 65 
i Hardy) 
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Use of dummy coded variables(1)

Dependent Variable: 
I. of political contr. of sales of agric. est. B

Std. 
Error Beta t Sig.

(Constant) 4.106 .152 26.991 .000

Pol .914 .337 .147 2.711 .007

Farmer .421 .240 .096 1.758 .080

• The constant shows the mean of the dependent variable for those who 
belong to the reference category

• The mean of the dependent variable for politicians are 0.91 opinion 
score points above the mean of the reference category

• The mean on the dependent variable for farmers are 0.42 opinion score 
points above the mean of the reference category
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Use of dummy coded variables (2)

Dependent Variable: I. of political 

control of sales of agricultural estates B Std. Error t Sig.

(Constant) 4.264 .186 22.954 .000

Number of decare land Owned .000 .000 2.176 .030

Pol .566 .382 1.482 .139

Farmer -.309 .338 -.913 .362

Compare this table with the previous. What has changed?

How do we interpret the coefficient on ”Pol” and ”Farmer”?

Spring 2010 ©  Erling Berge 2010 202

Recall: 

Multiple regression: model
Let K = number of parameters in the model 

(then K-1 = number of variables)

Population model

• yi = 0 + 1 xi1 + 2 xi2 + 3 xi3 +...+ K-1 xi,K-1 + i

i = 1, ... ,N; where N = number of case in the population

Sample model

• yi = b0 + b1 xi1 + b2 xi2 + b3 xi3 +...+ bK-1 xi,K-1 + ei

i = 1, ... ,n; where n = number of case in the sample
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A note on the dependent variable in 
OLS regression:

• The requirement is that Y in OLS regression has to be 
interval scale. It has to be able to take any value between 
minus infinity and plus infinity. 

• Deviations from this may cause problems
• It is not, I repeat NOT, most emphatically NOT required 

that it shall have any particular distribution such as a 
normal distribution

• In some other types of models this is different. Maximum 
likelihood factor analysis for example assumes a 
multivariate normal distribution

• Normal distributions are assumed in order to be able to do 
tests 
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Conclusions (1)

• Linear regression can easily be extended to use 2 
or more explanatory variables

• If the assumptions of the regression is satisfied 
(that the error terms are normally distributed with 
independent and identically distributed errors –
“normal i.i.d. errors”) the regression will be a 
versatile and strong tool for analytical studies of 
the connection between a dependent and one or 
more independent variables
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Conclusions (2)
• The most common method of estimating coefficients for a 

regression model is called OLS (ordinary least squares)
• Coefficients computed based on a sample are seen as 

estimates of the population coefficient
• Using the t-test we can judge how good such coefficient 

estimates are 
• Using the F-test we may evaluate several coefficient 

estimates in one test (dummy coded variables, interaction 
terms, curvilinear variables)
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Conclusions (3)
• Dummy variables are useful in several ways

– A single dummy coded x-variable will give a test of the 
difference in means for two groups (coded 0 and 1)

– Nominal scale variables with more than 2 categories can 
be recoded by means of dummy coding and included in 
regression anlysis

– By using effect coding we can perform analysis of 
variance of the ANOVA type



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 104

Spring 2010 ©  Erling Berge 2010 207

Logistic regression

• Hamilton Ch 7 p217-234  
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LOGIT REGRESSION
• Should be used if the dependent variable (Y) is 

a nominal scale
• Here it is assumed that Y has the values 0 or 1
• The model of the conditional probability of Y, 

E[Y | X], is based on the logistic function 
(E[Y | X] is read “the expected value of Y given 
the value of X”)

• But
Why cannot E[Y | X] be a linear function also in 
this case?
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The linear probability model: LPM

• The linear probability model (LPM) of yi
when yi can take only two values (0, 1) 
assumes that we can interpret E[yi | Xi] 
as a probability

• Xi = {x1i, x2i, x3i, …, x(K-1)i}
• E[yi | Xi] = b0 + j bj xji = Pr[yi =1] 
• This leads to severe problems:
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Are the assumptions of a linear regression 
model satisfied for the LPM?

• One assumptions of the LPM is that  the residual, ei
satisfies the requirements of OLS

• The the residual must be either 
– ei = 1 – (b0 + j bj xji) or 
– ei = 0 – (b0 + j bj xji) 

• This means that there is heteroscedasticity (the residual 
varies with the size of the values on the x-variables)

• There are estimation methods that can get around this 
problem (such as 2-stage weighted least squares method)

• One example of LPM:
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Eit eksempel på LPM:
OLS regression of a binary dependent variable on 

the independent variable ”years lived in town”

Dependent Variable: 
SCHOOLS SHOULD CLOSE B

Std. 
Error t Sig.

(Constant) ,594 ,059 10,147 ,000

YEARS LIVED IN TOWN -,008 ,002 -3,694 ,000

ANOVA tabell Sum of
Squares df

Mean 
Square F Sig.

Regression 3,111 1 3,111 13,648 ,000(a)

Residual 34,418 151 ,228

Total 37,529 152

The regression looks OK in these tables
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Here the predicted y is 
below 0 for reasonable 
values of x

Scatter plot with line of regression. Figure 7.1 Hamilton
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Conclusion: LPM model is wrong 

• The example shows that for reasonable values of the x 
variable we can get values of the predicted y where

E[yi | Xi] >1 or E[yi | Xi] < 0, 

• For this there is no remedy

• LPM is for substantial reasons a wrong model

• We need a model where we always will have 

0 ≤ E[yi | Xi] ≤ 1 

• The logistic function can provide such a model 
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The logistic function
The general logistic function is written
• yi = /(1+*exp[-xi]) + i

 provides an upper limit for yi 

this means that 0< yi < 
 determines the horizontal point for rapid growth 
If we determine that  = 1 and  = 1 one will 
always find that
• 0 < 1/(1+exp[-xi]) < 1
The logistic function will for all values 
of xi lie between 0 and 1  
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Logistic curves for different 

64020020

1

0.8

0.6

0.4

0.2

0

y= 1
1+exp(-0.5x)

y= 1
1+exp(-0.25x)

y= 1
1+exp(-0.1x)

Horizontal line through ( )0, 1

 determines how rapidly the curve grows 
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MODEL (1)
Definitions:
• The probability that person no i shall have the value 

1 on the variable yi will be written Pr(yi =1).
• Then Pr(yi ≠ 1) = 1 - Pr(yi=1) 
• The odds that person no i shall have the value 1 on 

the variable yi , here called Oi, is the ratio between 
two probabilities 

   
 

Pr 1
1

1 Pr 1 1
i i

i i
i i

y p
y

y p


  

  
O



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 109

Spring 2010 ©  Erling Berge 2010 217

MODEL (2)
Definitions:
• The LOGIT , Li , for person no i (corresponding to 

Pr(yi=1)) is the natural logarithm of the odds, Oi , that 
person no i has the value 1 on variable yi, is written:
Li = ln(Oi) = ln{pi/(1-pi)}

• The model assumes that Li is a linear function of the 
explanatory variables xj , 

• i.e.:
• Li = 0 + j j xji , where j=1,..,K-1, and  i=1,..,n 
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MODEL (3)

• Let X = (the collection of all xj ), then the 
probability of Yi = 1 for person no i 

   
1

0
1

1 exp( )
Pr( 1) X

1 exp 1 exp( )

where 

i
i i i

i i

K

i j ji
j

L
y E y

L L

L X




   
  

   

|

The graph of this relationship is useful for the 
interpretation what a change in x means
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MODEL (4)

In the model Yi = E[yi | Xi] + i the error is either
• i = 1 - E[yi | Xi] with probability E[yi | Xi] 

(since Pr(yi = 1) = E[yi | Xi] ), 

or the error is
• i = - E[yi | Xi] with probability 1 - E[yi | Xi]

• Meaning that the error has a distribution known as the 
binomial distribution with 
pi = E[yi | Xi]  
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Estimation by the ML method
• The method used to estimate the parameters in the 

model is Maximum Likelihood
• The ML-method gives us the parameters that 

maximize the likelihood of finding just the 
observations we have got

• This Likelihood we call L
• The criterion for choosing regression parameters is 

that the Likelihood becomes as large as possible
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Maximum Likelihood (1)
• The Likelihood equals the product of the 

probability of each observation. For a 
dichotomous variable where Pr(Yi = 
1)=Pi this can be written

   1

1
1 ii

n YY
i ii

P P



 L
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Maximum Likelihood (2)
• It is easier to maximize the likelihood L

if one uses the natural logarithm of L :

      
1

ln ln 1 ln 1
n

i i i i
i

y P y P


   L

• The natural logarithm of L is called the 

LogLikelihood, It will be written LL. 

• LL has a central role in logistic regression. 
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Maximum Likelihood (3)
• The LogLikelihood LL will always be 

negative
• Maximizing LL is the same as 

minimizing the positive 
LogLikelihood; i.e. minimizing -LL

• Finding parameter values that 
minimizes - LL can be done only by 
”trial and error”, i.e. using an iterative 
procedure
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Iterative estimation

From Hamilton 
Tabell 7.1 Iteration

-2 Log 
Likelihood

Coefficients  

Constant lived

Initial 0 209,212 -,276

Step 1 195,684 ,376 -,034

2 195,269 ,455 -,041

3 195,267 ,460 -,041

4 195,267 ,460 -,041

Note the column titled -2 LogLikelihood
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Footnotes to the tables
• Step 0: Point of departure is a model with only a 

constant and no variables
• Iterative estimation

– Estimation ends at iteration no 4 since the parameter 
estimates changed less than 0.001

For the next slide:
• The Wald statistic that SPSS provides equals the 

square of the “t” that Hamilton (and STATA) 
provides (Wald = t2)
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Logistic model instead of LPM

Dependent: 
Schools should close B S.E. Wald df Sig. Exp(B)

Lived in town -,041 ,012 11,399 1 ,001 ,960

Constant ,460 ,263 3,069 1 ,080 1,584

Dependent Variable: 
SCHOOLS SHOULD CLOSE B Std. Error t Sig.

(Constant) ,594 ,059 10,147 ,000

YEARS LIVED IN TOWN -,008 ,002 -3,694 ,000

OLS regression (slide 6 above)

Logistic regression 
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The linear model 
is entered beside 
the logistic 

Fig 7.4 Hamilton
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TESTING

Two tests are useful

• (1) The Likelihood ratio test 
– This can be used analogous to the F-test 

(e.g. comparing two NESTED models)

• (2) Wald test  
– The square root of this can be used 

analogous to the t-test
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Interpretation (1)
• The difference between the linear model and the 

logistic is large in the neighbourhood of 0 and 1 
• LPM is easy to interpret: Yi = 0 when x1i=0, and 

when x1i increases with one unit Yi increases with 1
units

• The logistic model is more difficult to interpret. It is 
non-linear both in relation to the odds and the 
probability
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ODDS and ODDS RATIOS

• The Logit, Li, ( Li= 0 + j j xji ) is defined as the
natural logarithm of the odds 

This means that

• odds  = Oi (Yi=1) = exp(Li) = eLi

and

• Odds ratio= Oi (Yi=1| Li’) / Oi (Yi=1| Li)

– where Li’ and Li have different values on only one 
variable xj.
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Interpretation (2)
• When all x equals 0 then Li = 0 This means that the odds 

for yi = 1 in this case is exp{0}

• If all x-variables are kept fixed (they sum up to a constant) 
while x1 increases with 1, the odds for yi = 1 will be 
multiplied by exp{1} 

• This means that it will change with 

100(exp{1} – 1) %

• The probability Pr{yi = 1} will change with a factor affect 
by all elements in the logit

Fotnote: 

• I tabellen ovanfor finn vi L = 0,460 + -
0,041*LivedInTown

• Her finn vi oddsen for Y=1 for kvart år ekstra ein bur 
i byen exp{-0,041} = 0,96

• Rekna om til prosentvis endring blir det 100[exp{-
0,041} - 1] = -4% pr år
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Logistic regression: assumptions

• The model is correctly specified
• The logit is linear in its parameters

• All relevant variables are included

• No irrelevant variables are included

• x-variables are measured without error 

• Observations are independent

• No perfect multicollinearity

• No perfect discrimination

• Sufficiently large sample
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Assumptions that cannot be tested

• Model specification
• All relevant variables are included

• x-variables are measured without error 
• Observations are independent
Two will be tested automatically. 
• If the model can be estimated by SPSS there is

– No perfect multicollinearity and
– No perfect discrimination 
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Fotnote:

• Case med stor påverknad kan vere eit
problem

• Kva som er eit stort nok utval er ikkje alltid
klart, det er svært avhengig av korleis casa 
fordeler seg på 0 og 1 kategoriane. Dersom
den eine vert for liten vil det skape problem 
for estimering av partielle verknader
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Assumptions that can be tested
• Model specification

• logit is linear in the parameters
• no irrelevant variables are included

• Sufficiently large sample 
• What is “sufficiently large” depends on the number 

of different patterns in the sample and how cases are 
distributed across these

• Testing implies an assessment of whether  
statistical problems leads to departure from 
the assumptions
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample

• High degree of multicollinearity
– Leading to large standard errors (imprecise estimates)

– Multicollinearity is discovered and treated in the same way as 
in OLS regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise estimates)

– Will be discovered automatically by SPSS

Fotnote: 
Oppdaging av multikollinearitet

1.Korrelasjonsmatrise mellom x-variablane (ikkje særleg 
påliteleg)

2.Korrelasjonsmatrise mellom parametrane (seier ikkje noko 
om årsaka til multikollineariteten)

3.Sjekk toleransen gjennom regresjon av kvar x-variabel på 
resten av x-variablane. Finn Rk

2

(determinasjonskoeffesienten). Låg toleranse (1-Rk
2) 

indikerer eit potensielt problem.

Vi bøter på problemet med meir data, kombinasjon av variablar 
eller test av grupper av variablar der eigen effekt ikkje kan 
identifiserast. 
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Discrimination in Hamilton table 7.5
• Odds for weaker requirements 

is 44/202 = 0,218 among 
women without small children 

• Odds for weaker requirement is 
0/79 = 0 among women with 
small children 

• Odds rate is 0/0,218 = 0 hence 
exp{bwoman}=0 

• This means that bwoman = minus 
infinity 

Y = 

Strength of

water quality 
standards

Women 
without 
small 
children

Women 
with 
small 
children

Not 
weaker

202 79

Weaker 
OK

44 0
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Discrimination/ separation
• Problems with discrimination appear when we for a given 

x-value get almost perfect prediction of the y-value (nearly 
all with a given x-value have the same y-value)

• In SPSS it may produce the following message:

• There is possibly a quasi-complete separation in the data. Either the 
maximum likelihood estimates do not exist or some parameter 
estimates are infinite.

• The NOMREG procedure continues despite the above warning(s). 
Subsequent results shown are based on the last iteration. Validity of 
the model fit is uncertain.

Warnings
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The LikeLihood Ratio test (1)

• The ratio between two Likelihoods equals the 
difference between two LogLikelihoods

• The difference between the LogLikelihood (LL) 
of two nested models, estimated on the same 
data, can be used to test which of two models fits 
the data best, just like the F-statistic is used in 
OLS regression

• The test can also be used for singe regression 
coefficients (single variables). In small samples it 
has better properties than the Wald statistic
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The LikeLihood Ratio test (2)

The LikeLihood Ratio test statistic 
• 

 = -2[LL(model1) - LL(model2)]

will, if the null hypothesis of no difference between 
the two models is correct, be distributed 
approximately (for large n)  as the chi-square 
distribution with number of degrees of freedom 
equal to the difference in number of parameters in 
the two models (H)
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Fotnote: 

• Hugs kolonnen med -2LogLikelihood i 
tabellen frå estimeringa
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Example of a Likelihood Ratio test

• Model 1: just constant
• Model 2: constant plus one variable

• 
 = -2[LL(model1) - LL(model2)]
= -2LL(model1) + 2LL(model2)

• Find the value of the ChiSquare and the 
number of degrees of freedom

• e.g.: LogLikelihood (mod1) = 209,212/(-2)
• LogLikelihood (mod2) = 195,267/(-2)

From
Tab 7.1:
-2 Log 

Likelihood

209,212

195,684

195,269

195,267

195,267
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The Wald test (1)
• The Wald (or chisquare) test statistic provided by SPSS = 

t2 = (bk/ SE(bk))2 (where t is the t used by Hamilton) can 
be used for testing single parameters similarly to the t-
statistic of the OLS regression

• If the null hypothesis is correct, t will (for large n)  in 
logistic regression be approximately normally distributed

• If the null hypothesis is correct, the Wald statistic will (for 
large n) in logistic regression be approximately chisquare 
distributed with df=1

Fotnote: 

• I små utval vil denne testen vere problematisk. 
Ein bør da nytte sannsynsratetesten.

Spring 2010 ©  Erling Berge 2010 246



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 124

Spring 2010 ©  Erling Berge 2010 247

Excerpt from Hamilton Table 7.2

Iterasjon -2 Log likelihood

0 209,212

1 152,534

2 149,466

3 149,382

4 149,382

5 149,382

Variables B S.E. Wald df Sig. Exp(B)

Lived -,046 ,015 9,698 1 ,002 ,955

Educ -,166 ,090 3,404 1 ,065 ,847

Contam 1,208 ,465 6,739 1 ,009 3,347

Hsc 2,173 ,464 21,919 1 ,000 8,784

Constant 1,731 1,302 1,768 1 ,184 5,649
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Confidence interval for parameter estimates

• Can be constructed based on the fact that the 
square root of the Wald statistic approximately 
follows a normal distribution with 1 degree of 
freedom 

• bk - t*SE(bk) < k < bk + t*SE(bk) 
where t is a value taken from the table of the  
normal distribution with level of significance 
equal to 
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Can be constructed based on the t-distribution 
(1)

• If a table of the normal distribution is missing one 
may use the t-distribution since the t-distribution is 
approximately normally distributed for large n-K (e.g. 
for n-K > 120)
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Excerpt from Hamilton Table 7.3 (from SPSS)

STATA

SPSS B S.E.
t2 

Wald df
Prob>t

Sig. Exp(B)

Step 1 lived -,047 ,017 7,550 1 ,006 ,954

educ -,206 ,093 4,887 1 ,027 ,814

contam 1,282 ,481 7,094 1 ,008 3,604

hsc 2,418 ,510 22,508 1 ,000 11,223

female -,052 ,557 ,009 1 ,926 ,950

kids -,671 ,566 1,406 1 ,236 ,511

nodad -2,226 ,999 4,964 1 ,026 ,108

Constant 2,894 1,603 3,259 1 ,071 18,060
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More from Hamilton Table 7.3

Iteration
-2 Log 

likelihood Coefficients

Const lived educ contam hsc female kids nodad

Step0 209,212 -0,276

Step1 1 147,028 1,565 -,027 -,130 ,782 1,764 -,015 -,365 -1,074

2 141,482 2,538 -,041 -,187 1,147 2,239 -,037 -,580 -1,844

3 141,054 2,859 -,046 -,204 1,269 2,401 -,050 -,662 -2,184

4 141,049 2,893 -,047 -,206 1,282 2,418 -,052 -,671 -2,225

5 141,049 2,894 -,047 -,206 1,282 2,418 -,052 -,671 -2,226
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Is the model in table 7.3 better than the model 
in table 7.2 ?

• LL(model in 7.3) = 141,049/(-2)
• LL(model in 7.2) = 149,382/(-2)

• 
 = -2[LL(model 7.2) - LL(model 7.3)]

• Find 
 value 

• Find H
• Look up the table of the chisquare distribution 
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The model of the probability of observing 
y=1 for person i

   
1

0
1

exp( )1
Pr( 1)

1 exp 1 exp( )

where the logit  is a linear function 

of the explanatory variables

i
i i

i i

K

i j ji
j

L
y E y x

L L

L X




   
  

   

|

It is not easy to interpret the meaning of the 
coefficients just based on this formula
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The odds ratio

• The odds ratio, O, can  be interpreted as the 
relative effect of having one variable value 
rather than another 

• e.g. if xki = t+1 in Li’ and xki = t in Li

• O = Oi (Yi=1| Li’)/ Oi (Yi=1| Li)
= exp[Li’ ]/ exp[Li] 
= exp[k]

• Why k ?
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The odds ratio : example I
• The Odds for answering yes = 

eb0+b1*Alder+b2*Kvinne+b3*E.utd+b4*Barn i HH

• The odds ratio for answering yes between women and men =

0 1 2 3 4

2

0 1 2 3 4

* *1 * . * _ _

* *0 * . * _ _

b b Alder b b E utd b Barn i HH
b

b b Alder b b E utd b Barn i HH

e
e

e

   

    

Remember the rules of power exponents
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The odds ratio : example II

• The Odds for answering yes given one 
year of extra education

 0 1 2 3 4

3

0 1 2 3 4

* * * . 1 * _ _

* * * . * _ _

b b Alder b Kvinne b E utd b Barn i HH
b

b b Alder b Kvinne b E utd b Barn i HH

e
e

e

    

    

Remember the rules of power exponents
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Example from Hamilton table 7.2

• What is the odds ratio for yes to closing the school from 
one year extra education?

• The odds ratio is the ratio of two odds where one odds is 
the odds for a person with one year extra education

0 1 2 3 4

0 1 2 3 4

2

2

2

* *( 1) * *

* * * *

*( 1)

*

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b Utdanning
b

b Utdanning

e

e

e
e

e
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Example from Hamilton table 7.2 cont. 

• Odds ratio = Exp{b2} = exp(-0,166) = 0,847

• One extra year of education implies that the odds is 
reduced with a factor of 0.847

• One may also say that the odds has increased with a 
factor of 

100(0,847-1)% = -15,3% 

• Meaning that it has declined with 15,3% 
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Concluding on logistic regression

• If the assumptions are satisfied logistic 
regression will provide normally 
distributed, unbiased and efficient (minimal 
variance) estimates of the parameters
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Regression criticism

• Hamilton Ch 4 p109-123 
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Analyses of models are based on 
assumptions

• OLS is a simple technique of analysis with very 
good theoretical properties. But:

• The good properties are based on certain 
assumptions

• If the assumptions do not hold the good properties 
evaporates

• Investigating the degree to which the assumptions 
hold is the most important part of a regression 
analysis
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OLS-REGRESSION: assumptions

• I SPECIFICATION REQUIREMENT

• The model is correctly specified

• II GAUSS-MARKOV REQUIREMENTS

• Ensures that the estimates are “BLUE”

• III NORMALLY DISTRIBUTED ERROR TERM

• Ensures that the tests are valid
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Fotnote: 

• Teknisk sett kan ein seie at 
spesifikasjonskravet er inkludert i dei to første 
Gauss-Markov krava. Men kravet er så viktig 
at vi godt kan forsvare å setje det for seg sjølv. 
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I SPECIFICATION REQUIREMENT

• The model is correctly specified if
– The expected value of y, given the values of the 

independent variables, is a linear function of the 
parameters of the x-variables

– All included x-variables have an impact on the 
expected y-value

– No other variable has an impact on expected y-value at 
the same time as they correlate with included x-
variables
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Fotnote: 

• Ein ”lineær funksjon av parametrane” tyder 
at mellom kvart +/- finst ein og berre ein 
parameter. 
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II GAUSS-MARKOV REQUIREMENTS 
(i)

(1) x is known, without stochastic variation
(2) Errors have an expected value of 0 for all i

•E(i for all i

Given (1) and (2) i will be independent of xk for all k

and OLS provides unbiased estimates of 
(unbiased = forventningsrett)
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Fotnote: 

• Når feilen er uavhengig av x-ane 
(ukorrelerte) er modellen teknisk sett rett 
spesifisert. Dette tyder at 
”Spesifikasjonskravet” ovanfor eigentleg er 
overflødig.

• Det er likevel det viktigaste kravet og er 
også nært knytt til det teoretiske 
utgangspunktet. 
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II GAUSS-MARKOV REQUIREMENTS (ii)

(3) Errors have a constant variance for all i

• Var(i for all i

This is called homoscedasticity 

(4) Errors are uncorrelated with each other

• Cov(i, j for all i ≠ j 

This is called no autocorrelation 
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Fotnote: 

• (3) Er kravet om homoskedastisitet

• (4) Er kravet om fråvær av autokorrelasjon
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II GAUSS-MARKOV REQUIREMENTS (iii)

Given (3) and (4) in addition to (1) and (2) provides:
• a. Estimates of standard errors of regression coefficients are 

unbiased and 
• b. The Gauss-Markov theorem:

OLS estimates have less variance than any other linear 
unbiased estimate (including ML estimates) 

OLS gives “BLUE”
(Best Linear Unbiased Estimate)
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Fotnote: 

• Best = minst varians, 

• Unbiased = forventningsrett 
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II GAUSS-MARKOV REQUIREMENTS (iv)

(1) - (4) are called the GAUSS-MARKOV requirements

• Given (2) - (4) with an additional requirement that 
errors are uncorrelated with x-variables:

•cov (xik, i for all i,k

The coefficients and standard errors are 
consistent (converging in probability to the true 
population value as sample size increases) 
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Fotnote: 

• Var[.] og cov[.] viser til populasjonsverdiane
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Footnote 1:
Unbiased estimators

• Unbiased means that 

E[bk ] = k

• In the long run we are bound to find the 
population value - k - if we draw 
sufficiently many samples, calculates bk and 
average these
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Footnote 2:
Consistent estimators

• An estimator is consistent if we as sample size 
(n) grows towards infinity, find that b 
approaches  and  sb [or SEb] approaches 

• bk is a consistent estimator of k if we for any 
small value of c have

limn→∞ [Pr{ Ibk - kI < c }] = 1
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Footnote 3: In BLUE ”Best” means  
minimal variance estimator

• Minimal variance or efficient estimator 
means that 
var(bk) < var(ak) for all estimators a 
different from b 

• Equivalent: 
E[bk - k]2 < E[ak - k]2 for all 
estimators a unlike b 
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Footnote 4:

Biased estimators

• Even if the requirements ensuring that our 
estimates are BLUE one may at times find biased 
estimators with less variance such as in 

• Ridge Regression

Non-linear estimators

• There may be non-linear estimators that are 
unbiased and with less variance than BLUE 
estimators
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III NORMALLY DISTRIBUTED ERROR 
TERM

• (5) If all errors are normally distributed with expectation 
0 and standard deviation of  , that is if

i ~ N(0,   for all i
– Then we can test hypotheses about  and and

– OLS estimates will have less variance than estimates from all 
other unbiased estimators 

– OLS results are “BUE”

(Best Unbiased Estimate)
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Fotnote: 

• (5) Er ikkje nødvendig for at OLS skal vere 
”BLUE” (Best Linear Unbiased Estimate)

• Det kan vere ein dramatisk nedgang i 
variansen til estimata dersom feilen faktisk 
er normalfordelt
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Problems in regression analysis that 
cannot be tested

• If all relevant variables are included
• If x-variables have measurement errors
• If the expected value of the error is 0

This means that we are unable to check if the 
correlation between the error term and x-variables 
actually is 0 
OLS constructs residuals so that cov(xik,ei)=0
This is in reality saying the same as the first point 
that we are unable to test if all relevant variables are 
included
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Fotnote: 

• OLS metoden er konstruert slik at utvals 
residualane har eit gjennomsnitt på 0. Dette 
seier ingenting om føresetnaden om at dei 
skal ha det i populasjonen. 
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Problems in regression analysis that can be 
tested (1)

• Non-linear relationships
• Inclusion of an irrelevant variable
• Non-constant variance of the error term 

(heteroscedasticity)
• Autocorrelation for the error term
• Correlations among error terms
• Non-normal error terms
• Multicollinearity 
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Consequences of problems (Hamilton, p113)
Unwanted properties of estimates

Requirem
ent

Problem Biased 
estimate of b

Biased estimate of 
SEb

Invalid 
t&F-tests

High 
var[b] 

Specification Non-linear relationship X X X -

-”- Excluded relevant variable X X X -

-”- Included irrelevant variable 0 0 0 X

Gauss-Markov X with measurement error X X X -

-”- Heteroscedasticity 0 X X X

-”- Autocorrelation 0 X X X

-”- X correlated with  X X X -

Normal 
distribution

 not normally distributed 0 0 X X

... no 
requirement

Multicollinearity 0 0 0 X

Fotnote: 

• Høg var[b] er det same som ineffektive 
estimatorar

• Ineffektivitet er studert berre for 
forventningsrette estimatorar
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Problems in regression analysis that can 
be discovered (2)

• Outliers (extreme y-values)

• Influence (cases with large influence: 
unusual combinations of y and x-values)

• Leverage (potential for influence)
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Tools for discovering problems

• Studies of 
– One-variable distributions (frequency 

distributions and histogram)

– Two-variable co-variation (correlation and 
scatter plot)

– Residual (distribution and covariation with 
predicted values) 
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Correlation and scatter plot

Data from 122 countries ENERGY 
CONSUMP
TION PER 
PERSON

MEAN 
ANNUAL 

POPULATION 
GROWTH

FERTILIZER 
USE PER 

HECTARE
CRUDE 

BIRTH RATE

ENERGY 
CONSUMPTION PER 
PERSON

Pearson Correlation
1 -,505 ,533 -,689

N 125 122 125 122

MEAN ANNUAL 
POPULATION GROWTH

Pearson Correlation -,505 1 -,469 ,829

N 122 125 125 125

FERTILIZER USE PER 
HECTARE

Pearson Correlation
,533 -,469 1 -,589

N 125 125 128 125

CRUDE BIRTH RATE Pearson Correlation
-,689 ,829 -,589 1

N 122 125 125 125

Fotnote: 
• Korrelasjonar gir forteikn og styrke i 

LINEÆRE samband

• Korrelasjonasmatriser kan gøyme problem 
som t.d.

• Kurvelinearitet

• Utliggarar

• Heteroskedastisitet

• Fordelingsform 
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Correlation and scatter plot

ENERGY CONSUMPTION PER PERSON
MEAN ANNUAL POPULATION GROWTH

FERTILIZER USE PER HECTARE
CRUDE BIRTH RATE
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Fotnote: 

• Før vi lagar oss ein modell som tar vare på 
dei ikkje lineære samanhengane er det lite 
vi kan gjere med problem som 
heteroskedastisitet, ikkje-normalitet, etc
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Heteroscedasticity

(non-constant variance of error term) can arise from:

• Measurement error (e.g. y more accurate the larger x is)

• Outliers

• If i contains an important variable that varies with both 
x and y (specification error)

• Specification error is the same as the wrong model and 
may cause heteroscedasticity 

• An important diagnostic tool is a plot of the residual 
against predicted value (Ŷ)
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Example: Hamilton table 3.2
Dependent Variable: 
Summer 1981 Water Use

Unstandardized 
Coefficients

B Std. Error t Sig. 

(Constant) 242,220 206,864 1,171 ,242

Income in Thousands 20,967 3,464 6,053 ,000

Summer 1980 Water Use ,492 ,026 18,671 ,000

Education in Years -41,866 13,220 -3,167 ,002

head of house retired? 189,184 95,021 1,991 ,047

# of People Resident 1981 248,197 28,725 8,641 ,000

Increase in # of People 96,454 80,519 1,198 ,232
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Fotnote: 

• Vi har tidlegare sett på regresjonen av 
vassforbruket 1981 etter sparekampanjen. 
Dersom vi tar vare på residualane frå denne 
regresjonen og plottar residualen mot 
predikert verdi av Y finn vi 
heteroskedastisitet.
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From the regression reported in table 3.2 in Hamilton
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Fotnote:

• Spreiinga til residualen aukar med aukande 
predikert y 

• Predikert Y er her ein indeks som viser til 
høge gjennomsnittlege x-verdiar

• Når spreiinga av residualen varierer 
systematisk med verdiane på x-variablane 
har vi heteroskedastisitet
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Footnote for the previous figure
• There is heteroscedasticity if the variation of the 

residual (variation around a typical value) varies 
systematically with the value of one or more x-
variables

• The figure shows that the variation of the residual 
increases with increasing predicted y: ŷ

• Predicted y (ŷ) is in this case an index showing 
high average x-values 

• When the variation of the residual varies 
systematically with the values of the x-variables 
like this, we conclude with heteroscedasticity



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 149

Spring 2010 ©  Erling Berge 2010 297

Unstandardized Residual
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Box-plot of the 
residual shows 

•Heavy tails

•Many outliers

•Weakly positively 
skewed distribution

Will any of the 
outliers affect the 
regression? 

Fotnote: 

• Heteroskedastisitet fører til ineffektive og 
skeive estimat av standardfeila til 
regresjonskoeffisientane. Ikkje-normale feil 
vil også auke ineffektiviteten og gjere at F-
og t-testane ikkje blir truverdige. Vi kan i 
grunnen ikkje tru på dei p-verdiane vi ser i 
tabell 3.2. 
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The distribution seen from another angle
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Band-regression

• Homoscedasticity means that the median (and the 
average) of the absolute value of the residual, i.e.: 
median{IeiI}, should be about the same for all 
values of the predicted yi

• If we find that the median of IeiI for given 
predicted values of yi changes systematically with 
the value of predicted yi (ŷi) it indicates 
heteroscedasticity 

• Such analyses can easily be done in SPSS
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Absolute value of ei (Based on regression in table 3.2 in Hamilton)
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Fotnote: 
• Denne figuren lagar vi relativt enkelt i SPSS

• Først lagrar vi residualen og predikert y frå regresjonen.

• Så reknar vi om residualen til ein ny variabel med 
absoluttverdien gjennom ”Compute” under ”Transform”.

• Så deler vi opp predikert y i band gjennom prosedyren 
”Visual bander” under ”Transform” 

• Deretter nyttar vi ”Boxplot” under ”Graphs” der vi 
spesifiserer absoluttverdi av residual som variabel og 
bandvariabelen som kategoriakse

Spring 2010 ©  Erling Berge 2010 303

Spring 2010 ©  Erling Berge 2010 304

Band regression in SPSS

• Start by saving the residual and predicted y from the 
regression

• Compute a new variable by taking the absolute value of 
the residual (Use “compute” under the “transform” menu)

• Then partition the predicted y into bands by using the 
procedure ”Visual bander” under the ”Transform” menu

• Then use ”Box plot” under ”Graphs” where the absolute 
value of the residual is specified as variable and the band 
variable as category axis
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Footnote to Eikemo and Clausen 2007

• Page 121 describes White’s test of Heteroscedasticity 

• The description is wrong
• They say to replace y with e2 in the regression on all the x 

variables

• That is not sufficient. 

• The x-variables have to be replaced by all unique cross 
products of x with x (including x2)

• Unique elements of the Kronecker product of x with x 
(where x is the vector of x-variables) 
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Autocorrelation (1)

• Correlation among variable values on the same 
variable across different cases

(e.g. between i and i -1 )

• Autocorrelation leads to larger variance and biased 
estimates of the standard error - similar to 
heteroscedasticity

• In a simple random sample from a population 
autocorrelation is improbable
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Autocorrelation (2)
• Autocorrelation is the result of a wrongly specified 

model. A variable is missing

• Typically it is found in time series and 
geographically ordered cases

• Tests (e.g. Durbin-Watson) is based on the sorting of 
the cases. Hence:

• A hypothesis about autocorrelation needs to specify 
the sorting order of the cases
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Durbin-Watson test (1)
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Should not be used for autoregressive models, i.e. 
models where the y-variable also is an x-variable, see 
table 3.2



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 155

Spring 2010 ©  Erling Berge 2010 309

Durbin-Watson test (2)
• The sampling distribution of the d-statistic is 

known and tabled as  dL and dU (table A4.4 in 
Hamilton), the number of degrees of freedom is 
based on n and K-1

• Test rule: 
– Reject if d<dL

– Do not reject if d>dU

– If dL < d < dU the test is inconclusive

• d=2 means uncorrelated residuals
• Positive autocorrelation results in d<2
• Negative autocorrelation results in d>2 
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Daily water use, average pr month
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Ordinary OLS-regression where the 
case is month

Dependent Variable: AVERAGE DAILY 

WATER USE
Unstandardized 

Coefficients t Sig.

B Std. Error

(Constant) 3,828 ,101 38,035 ,000

AVERAGE MONTHLY 
TEMPERATURE

,013 ,002 7,574 ,000

PRECIPITATION IN INCHES -,047 ,021 -2,234 ,027

CONSERVATION CAMPAIGN 
DUMMY -,247 ,113 -2,176 ,031

Predictors: (Constant), CONSERVATION CAMPAIGN DUMMY, AVERAGE 
MONTHLY TEMPERATURE, PRECIPITATION IN INCHES
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Test of autocorrelation

Dependent 
Variable: 
AVERAGE 
DAILY 

WATER USE R R Square
Adjusted R 

Square

Std. Error of 
the 

Estimate
Durbin-

Watson

1 ,572(a) ,327 ,312 ,36045 ,535

Predictors: (Constant), CONSERVATION CAMPAIGN DUMMY, AVERAGE 
MONTHLY TEMPERATURE, PRECIPITATION IN INCHES

N = 137, K-1 = 3

Find limits for rejection / acceptance of the null hypothesis of 
no autocorrelation with level of significance 0,05 
Tip: Look up table A4.4 in Hamilton, p355
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Fotnote: 

• dL = 1.61 og dU = 1,74
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Autocorrelation coefficient
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m-th order autocorrelation coefficient
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Fotnote: 
• Durbin-Watson testen er relatert til 

autokorrelasjonskoeffisienten av første 
orden (m=1)

• All utrekning av testar er basert på data slik 
dei faktisk er sortert på data fila. Testen vil 
derfor gi meining dersom casa er sortert 
substansielt slik hypotesen om 
autorkorrelasjon føreset. 
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Residual ”Daily water use”, month
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Smoothing with 3 points
• Sliding average 

• ”Hanning”

• Sliding median

* 1 1
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Residual, smoothing once
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Residual, smoothing twice
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Residual, smoothing five times
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Consequences of autocorrelation
• Tests of hypotheses and confidence intervals are 

unreliable. Regressions may nevertheless provide a 
good description of the sample. Parameters are 
unbiased

• Special programs can estimate standard errors 
consistently

• Include in the model variables affecting neighbouring 
cases

• Use techniques developed for time series analysis 
(e.g.: analyse the difference between two points in 
time, y)
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Concluding on Autocorrelation
• Correlation among variable values on the same variable 

across different cases (e.g. between i and i -1 )
• Autocorrelation leads to larger variance and biased estimates 

of the standard error - similar to heteroscedasticity
• Autocorrelation is the result of a wrongly specified model
• Typically it is found in time series and geographically ordered 

cases. In a simple random sample from a population 
autocorrelation is improbable

• Tests (e.g. Durbin-Watson) is based on the sorting of the 
cases. Hence: hypotheses about autocorrelation need to 
specify the sorting order of the cases
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Analyses of models are based on 
assumptions

• OLS is a simple technique of analysis with 
very good theoretical properties. But

• The good properties are based on certain 
assumptions

• If the assumptions do not hold the good 
properties evaporates

• Investigating the degree to which the 
assumptions hold is the most important part of 
the analysis
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OLS-REGRESSION: assumptions

• I SPECIFICATION REQUIREMENT
• The model is correctly specified

• II GAUSS-MARKOV REQUIREMENTS
– (1) x is known, without stochastic variation
– (2) Errors have an expected value of 0 for all i
– (3) Errors have a constant variance for all i
– (4) Errors are uncorrelated with each other

(Ensures that the estimates are “BLUE”)
• III NORMALLY DISTRIBUTED ERROR TERM

• Ensures that the tests are valid
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Fotnote: 

• Teknisk sett kan ein seie at 
spesifikasjonskravet er inkludert i dei to første 
Gauss-Markov krava. Men kravet er så viktig 
at vi godt kan forsvare å setje det for seg sjølv. 
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Problems in regression analysis that 
cannot be tested

• If all relevant variables are included
• If x-variables have measurement errors
• If the expected value of the error is 0
• (This means that we are unable to check if 

the correlation between the error term and 
x-variables actually is 0 and is actually the 
same as the first point that we are unable to 
test if the model is correctly specified)
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Fotnote: 

• OLS metoden er konstruert slik at utvals 
residualane har eit gjennomsnitt på 0. Dette 
seier ingenting om føresetnaden om at dei 
skal ha det i populasjonen. 
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The most important problems in regression 
analysis that can be tested

• Non-linear relationships

• Non-constant error of the error term 
(heteroscedasticity)

• Autocorrelation for the error term

• Non-normal error terms
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More on Heteroscedasticity

• Is present if the variance of the error term varies with the size 
of x-values 

• Predicted y is an indicator of the size of x-values (hence 
scatter plot of residual against predicted y)

• Heteroscedasticity (non-constant variance of error term) can 
arise from 
– Measurement error (e.g. y more accurate the larger x is)

– Outliers
– The wrong functional form 

– If i contain an important variable that varies with one or more x and 
y. The error term i is not independent of the x-es. Hence the Gauss-
Markov requirements 1 and 2 cannot be correct.
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Indicators of heteroscedasticity

• Inspection of the scatter plot of residual 
against predicted value of y

• Band regression of the scatter plot

An interesting option here is:

• Locally weighted / ”sliding” regression on the 
central part of the sample
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”Sliding” 
adapted line 
by means of 
locally 
weighted 
OLS 
regression

The 
procedure is 
called  
LOESS (see 
next slide) 

0,00000 2000,00000 4000,00000 6000,00000 8000,00000

Unstandardized Predicted Value

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

a
b

s
o

lu
tt

v
e

rd
iR

e
s
id

u
a

l

50%

99%

Spring 2010 ©  Erling Berge 2010 332332

A footnote: SPSS explains
Fit Lines
• In a fit line, the data points are fitted to a line that usually does not pass 

through all the data points. The fit line represents the trend of the data. 
Some fit lines are regression based. Others are based on iterative 
weighted least squares.

• Fit lines apply to scatter plots. You can create fit lines for all of the data 
values on a chart or for categories, depending on what you select when 
you create the fit line.

Loess 
• Draws a fit line using iterative weighted least squares. At least 13 data 

points are needed. This method fits a specified percentage of the data 
points, with the default being 50%. In addition to changing the percentage, 
you can select a specific kernel function. The default kernel (probability 
function) works well for most data. 
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Non-normal residuals
• Imply that t- and F-tests cannot be used

• Since OLS estimates of parameters are easily 
affected by outliers, heavy tails in the distribution of 
the residual will indicate large variation in estimates 
from sample to sample

• We can test the assumption of normally distributed 
error term by inspecting the distribution of the 
residual, e.g. by inspecting
– Histogram, box plot, or quantile-normal plot

– There are also more formal tests (but not very useful) 
based on skewness and kurtosis 
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Unstandardized Residual
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Diagram of the residual shows: 

Heavy tails, many outliers, and weakly positively skewed 
distribution

BOX PLOT HISTOGRAM
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Fotnote:

• Heteroskedastisitet fører til ineffektive og 
skeive estimat av standardfeila til 
regresjonskoeffisientane. Ikkje-normale feil vil 
også auke ineffektiviteten og gjere at F- og t-
testane ikkje blir truverdige. Vi kan i grunnen 
ikkje tru på dei p-verdiane vi ser i tabell 3.2. 
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In the normal 
distribution the ratio 
between IQR and 
the standard 
deviation is 1.35 :

IQR/ SE = 1.35

IQR/1.35 = SE

Skewed distribution of the residual (1)
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Fotnote: 
• (Kap 1:8) 

• I normalfordelinga finn vi at forholdstalet IQR/St.Dev (SE) = ca 1.35 slik at SE = 
ca IQR/1.35

• Dersom fordelinga av residualen er symmetrisk kan vi samanlikne SEe med 
IQR/1.35. Dersom

–SEe > IQR/1.35 er halane tynger enn i normalfordelinga

–SEe ≈ IQR/1.35 er halane tilnærma lik normalfordelinga

–SEe < IQR/1.35 er halane lettare enn i normalfordelinga

• Mellom 0 og 1 standardavvik finn vi 34,1345 % av observasjonane i ei 
normalfordeling. Dvs. mellom -1 og +1 ligg mao 68,269 % av observasjonane.

• Mellom -0.674 og +0.674 finn vi 50% av observasjonane dvs IQR er lik 1.348 
standardavvik

• Mellom -1,96 og +1,96 finn vi 95% av alle observasjonane

• Nokre statistiske prosedyrar krev normalfordeling, mange fungerer betre 
dersom vi har normalfordelte variablar.
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Skewed distribution of the residual (2)
• See Ch 1:8
• Since the average of the residuals (ei) always equals 0, the 

distribution will be skewed if the median is unequal to 0 
• It is known that for the normal distribution the standard deviation 

(or the standard error) equals approximately IQR/1.35

• If the distribution of the residual is symmetric we can compare  
SEe to IQR/1.35. If

– SEe > IQR/1.35 the tails are heavier than the normal distribution

– SEe ≈ IQR/1.35 the tails are approximately equal to the normal 
distribution

– SEe < IQR/1.35 the tails are lighter than the normal distribution
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Quantile-
Normal plot 
of residual 
from 
regression 
in table 3.2 
in Hamilton
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Normal Q-Q Plot of Unstandardized Residual

Case no is based on case sequence: so that 
no 94= case no 101, nr 85= case no 92 and 
no 80= case no 87
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Options if non-normality is found

• Test out if the right function has been used

• Test out if some important variable has been 
excluded
– If the model cannot be improved substantially, we may try 

transforming the dependent variable to symmetry

• Test out if lack of normality is caused by outliers or 
influential cases
– If there are outliers, transforming of the variable where the 

case is outlier may help
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Influence (1)

• A case (or observation) has influence if the 
regression result changes when the case is 
excluded

• Some cases have unusually large influence 
because of 
– Unusually large y-value (outliers)

– Unusually large value on an x-variable 

– Unusual combinations of variable values
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Influence (2)

• We can see if a case has influence by 
comparing regressions with and without a 
particular case. One may for example

• Inspect the difference between bk and bk(i)

where case no i has been excluded in the 
estimation of the last coefficient

• This difference measured relative to the 
standard error of  bk(i) is called DFBETASik



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 172

Spring 2010 ©  Erling Berge 2010 343343

DFBETASik 
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se(i) is the standard deviation of the residual when 
case no i has been exclude from the analysis RSSk is 
Residual Sum of Squares from the regression of xk

on all other x-variables

Fotnote: 

• Når DFBETASik > 0 vil case nr i trekkje bk opp

• Når DFBETASik < 0 vil case nr i trekkje bk ned

• Til større lDFBETASikl til større påverknad på 
bk har i 
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DFBETASik :

bk(i)
bk

outlier

One case may make a lot of difference 
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What is a large DFBETAS?

• DFBETASik is calculated for every independent variable for 
every case. We do not want to inspect all values for it

• Three criteria for finding large values we need to inspect are

– External scaling. lDFBETASikl > 2/ SQRT(n)
– Internal scaling. Look for severe outliers in the box plot of 

DFBETASik : 
DFBETASik< Q1-3IQR 
Q3 + 3IQR < DFBETASik

– Gap in the distribution of DFBETASik

• None of the DFBETASik needs to be problematic
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DFBETA income Standardized DFBETA income
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DFBETAS for income in the 
regression in Hamilton, table 3.2
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Standardized DFBETA income Standardized DFBETA water80
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Sequence

no
Case 

nr
water81 water80 water7

9
educat retire peop8

1
cpeop

91 98 1500 1300 1500 16 0 2 0

92 99 3500 6500 5100 14 0 6 0

93 100 1000 1000 2700 12 1 1 0

94 101 3800 12700 4800 20 0 5 0

95 102 4100 4500 2600 20 0 5 0

96 103 4200 5600 5400 16 0 5 -1

97 104 2400 2700 800 16 0 6 0

98 105 1600 2300 2200 14 0 4 0

99 107 2300 2300 3100 16 0 4 -2

Sequence in the data set and case no is not the same. 
Case no is fixed. Variable values.

Spring 2010 ©  Erling Berge 2010 350350

-20,00000 0,00000 20,00000 40,00000 60,00000 80,0000

Unstandardized Residual

-6000,00000

-4000,00000

-2000,00000

0,00000

2000,00000

4000,00000

6000,00000

Un
st

an
da

rd
ize

d 
Re

sid
ua

l

5

6

7

8

9

10

11
13

15 16

17

18

19

22

26

27

29

31
33

34
36

40

41

44

53
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99
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108
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127133
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142
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161
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183196

222
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376

416

451
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X: residual Inntekt i tusen

Y:  residual Vassforbruk sommar 1981

R Sq Linear = 0,07

Leverage plot for 
water use and 
income (see 
Hamilton p69-72 
on partial 
regression plots)

Look at the 
quantile-normal 
plot above
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Fotnote: 
• I følgje Hamilton vil dei 2 casa 134 og 127 endre 

regresjonskoeffisienten for inntekt dramatisk. 
Dersom vi ekskluderer desse to casa vil den minke 
frå 20,97 til 12,46 eller med om lag 40%. 2/496 deler 
av data (0,4%) kan altså endre ein koeffisient svært 
mykje. 

• Stundom er det små klynger av case som har 
påverknad. DFBETAS vil ikkje lett kunne oppdaga 
dette. Men i slike leverage plott er det ofte lettare å 
sjå det. 
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Consequences of case with large influence

• If we discover cases with large influence we should not 
remove them from the analysis unless they contain 
serious errors

• Take a careful look at influential cases, maybe there are 
measurement errors

• When influential cases are outliers their influence can 
be reduced by transformation

• Use robust regression not so easily affected as OLS 
regression

• If no errors are found report results both with and 
without one or two of the most influential cases
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Potential influence: leverage

• The potential for influence of a case from a particular 
combination of x-values is measured by the hat 
statistic hi

• hi varies from 1/n to 1. It has an average of  K/n (K = 
# parameters)

• SPSS reports the centred hi

– i.e.   (hi – K/n), we may call this for hc
i

– We must compute the normal hi = hc
i + K/n to judge the 

size by the criteria supplied by Hamilton
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What is a large value of leverage?

• As for DFBETAS different criteria can be 
suggested. They all depend on the sample 
size n
– If hi > 2K/n (or  hc

i > K/n) we find the ca 5% largest 
hi ; alternatively

• If max (hi) ≤ 0.2 there is no problem

• If 0.2 ≤ max (hi) ≤ 0.5 there is some risk for a problem

• If 0.5 ≤ max (hi) probably there is a problem
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Centered Leverage Value

0,00000

0,02000

0,04000

0,06000

0,08000

0,10000

0,12000

172

255

164
305 497

467239
278

470

107

323
68

376464
237

117

127

71

101

134
357

159

Max av hc
i er 

0.102

Or max of  hi

= 0.102 + 
K/n = 0.102 
+ 7/496 = 
0.116 < 0.2

Centred leverage 
(hc

i) from the  
regression in 
table 3.2 in 
Hamilton
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The difference between influence and leverage

Figur 4.14 i Hamilton
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The leverage statistic is found in many other 
case statistics

– Variance of the i-th 
residual

– Standardized residual 
(*ZRESID in SPSS)

– Studentized residual 
(*SRESID in SPSS)

– And remember that the 
standard deviation of the 
residual is

1
i

i

e i

e
z

s h




( ) 1
i

i

e i i

e
t

s h




2var[ ] [1 ]i e ie s h 

/( )es RSS n K 

Fotnote: 
• Den studentifiserte residualen vil teste ei hypotese om 

effekten av ein dummy-koda variabel (I) som har I=1 
for case nr i og 0 for alle andre case, mao om case i 
har ein effekt på modellen og derfor bør reknast som 
eit påverknadsrikt case. Kvar t verdi er t-fordelt med df
= n-K-1. Men når vi testar alle casa samtidig kjem vi 
opp i problemet med multiple komparasjonar i det vi 
gjer n testar. Basert på Bonferroni ulikheta kan ein 
teste n case samtidig med eit gitt nivå (alfa) på testen 
der som p-verdien til max(ti) er mindre enn (alfa)/n. 
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Total influence: Cook’s Di

• Cook’s distance Di

measure influence 
on the model as a 
whole, not on a 
specific  coefficient 
as DFBETASik

 
2

i

i

1

where z  is the standardized 

residual

and h  is the hat statistic 

(leverage)

i i
i

i

z h
D

K h
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What is a large Di ?

• One might want to take a look at all
– Di > 1 or

– Di > 4/n these are about the 5% largest Di

• Even if a case has low Di it may still be the 
case that it affects the size of single 
coefficients (it has a large DFBETASik)
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Cook's Distance
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495 4356470 76117

74
376
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92
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101Cook’s distance Di

from the regression 
in table 3.2 in 
Hamilton

Also see table 4.4 
(p133) in Hamilton
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Summarizing 

What can be done with outliers and cases with 

large influence? We can

• Investigate if data are erroneous. If data are wrong 
the case can be removed from the analysis

• Investigate if transformation to symmetry helps

• Report two equations: with and without cases with 
unreasonably large influence

• Get more data 
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Multicollinearity
• Means very high intercorrelations among x-

variables
• Check if parameter estimates are correlated
• Check if tolerance (the part of the variation of x that 

is not shared with other variables) is less than say 
0.1. If so there may be a problem

• VIF = variance inflation factor = 1/tolerance
• If multicollinearity is caused by squaring of 

variables or interaction terms it should not be seen 
as problematic
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Tolerance
• The amount of variation in a variable xk unique to that 

variable is called the tolerance of the variable
• Let R2

k be the coefficient of determination in the 
regression of xk on all the rest of the x-variables. The 
other x-variables explain the proportion R2

k of the 
variation in xk. 

• Then 1- R2
k is the unique variation: 

– Tolerance = 1- R2
k

• Perfect multicollinearity means that 
– R2

k = 1 and tolerance = 0
• Low values of tolerance make regression results less 

precise (larger standard errors)
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Variance Inflation Factor (VIF)

 21
k

e e e
b

k kk k

s s s
SE VIF

RSS TSSR TSS
  



• 1/tolerance = 1/(1-R2
k) = VIF

• The standard error of the regression coefficient bk

can be written

• Other things being equal lower tolerance (larger 
VIF) for xk will give higher standard error for bk

[SE increase with a factor equal to square root of 
VIF]
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Indicators of multicollinearity
• The best indicator is tolerance or VIF (both are 

based on R2
k )

• Other indicators are
– Correlation among single variables (not reliable)
– Inclusion/ exclusion of single variables give large 

changes in the effect of other variables
– Unexpected signs on the effects of some variable
– Standardized regression coefficients larger than1 or 

less than -1 
– Correlation among parameter estimates
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Dependent 
Variable: Summer 
1981 Water Use

Unstandardized 
Coefficients t Sig. Collinearity Statistics

B Std. Error Tolerance VIF

(Constant) 242,220 206,864 1,171 ,242

Summer 1980 
Water Use

,492 ,026 18,671 ,000 ,675 1,482

Income in 
Thousands

20,967 3,464 6,053 ,000 ,712 1,404

Education in 
Years

-41,866 13,220 -3,167 ,002 ,873 1,145

head of house 
retired?

189,184 95,021 1,991 ,047 ,776 1,289

# of People 
Resident, 1981

248,197 28,725 8,641 ,000 ,643 1,555

Increase in # of 
People

96,454 80,519 1,198 ,232 ,957 1,045

Tolerance and VIF from regression in table 3.2 in Hamilton
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What is low tolerance?

When R2
k > 0,9 

tolerance is < 0,1 
and VIF > 10

Factor of 
multiplication for the 
standard error is the 
square root of VIF 
(ca 3.2 for R2

k = 0,9)

Square root of VIF
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When is multicollinearity a problem?

• It is not a problem if the reason is curvilinearity or 
interaction terms in the model. But in testing we need to 
take account of the fact that if VIF is high parameter 
estimates are imprecise (high standard errors). They 
are tested as a group by the F-test

• If the reason is that two variables measure the same 
concept one of them should be dropped, or they can be 
combined in an index 

• It is a problem if we need estimates of the separate 
effects of two highly correlated variables (if a test of 
their joint effect is not sufficient)
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Summarizing (1)

• When errors are independent and identically normally 
distributed OLS estimates are as good or better than 
other possible estimates

• But the assumptions are rarely satisfied completely, 
we have to test the degree to which they are satisfied

• Many problems can be corrected if we learn about 
them

• Check early on if curvilinearity, outliers or 
heteroscedasticity are problems ( for example by use 
of scatter plots)
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Summarizing (2)
• Do more exact investigations using 

residual/predicted Y plots and leverage plots
– Curvilinearity (leverage plot, residual vs predicted Y 

plot)
– Heteroscedasticity (leverage plot, [absolute value of] 

residual against predicted Y plot)
– Non-normal residuals (quantile-normal plot, box-plot 

with analysis of median and IQR/1.35
– Influence (check DFBETAS and Cook’s D)
– When we do not find serious problems we can have 

more confidence in our conclusions
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Fitting Curves 
Robust Regression 

• Hamilton Ch 5 p145-173
• Hamilton Ch 6 p183-212 



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 187

Spring 2010 ©  Erling Berge 2010 373

Ch 5 Fitting Curves 
• A correctly specified model require that the function 

linking x-variables and y-variable is true to what really 
exist: is the relationship linear?

• Data can be inspected by means of band regression 
or smoothing

• The theory of causal impact can specify a non-linear 
relationship

• For phenomena that cannot be represented by a line 
we shall present some alternatives
– Curvilinear regression
– Non-linear regression
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Band regression
• Can be used to explore how the relationship 

among the variables actually appears
• If we can see a non-linear underlying trend of 

the data we must through transformations or 
use of curves find a form for the function better 
representing the relationship
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Pollution at different depths in 
sediments outside the coast of NH

• Pollution measured 
by the ratio  
chromium/iron at 
different depths of 
various  sediment 
samples

• Is the relationship 
linear? 
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DEPTH IN CM

0,00

3,00

6,00

9,00

12,00

15,00

C
R

/F
E

 R
A

TI
O

Fotnote: 

• Krom kom frå eit garveri som vart stengt sist på 
60 talet. Ureininga i ulike djup gir oss 
tidsforløpet til garveriverksemda. 
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Medians of 5 bands: rate of chromium/iron 
in sediments outside the coast of NH
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The relationship is obviously non-linear
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Transformed variables
• Using transformed variables makes a regression 

curvilinear. The transformation makes the original curve 
relationship into a linear relationship

• This is the most important reason for a transformation
• At the same time transformations may rectify several other 

types of statistical problems (outliers, heteroscedasticity, 
non-normal errors)  

• Procedure: 
– Choose an appropriate transformation and make new transformed variables
– Do a standard regression analysis with the transformed variables
– To interpret the results one usually will have to transform back to the original 

measurement scale



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 190

Fotnote: 
• Vi introduserte transformasjonar i kap 1 for å 

lage symmetri i fordelingane. (s17-23) 
• Vi brukte transformasjonar i kap 2 for å 

redusere problem med heteroskedastisitet. 
(s53-58) 

• Vi sjekkar effekten av transformasjon ved hjelp 
av histogram, box-plott, symmetriplott eller 
kvantil normal plott.

• Vi sjekkar normalitet t.d. ved IQR/1.35 mot sy

• Repeter potensstigen for transformasjon.
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The linear model
1

0
1

K

i j j i i
j

y X  




  
• In the linear model we can transform both x- and y-

variables without any consequences for the 
properties of OLS estimates of the parameters

• OLS is a valid method as long as the model is linear 
in the parameters
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Curvilinear Models

• Practically speaking this is regression with 
transformed variables

• We shall take a look at how different 
transformations provide different forms for the 
variable relations
– Semi-logarithmic curves
– Log-Log curves
– Log-reciprocal curves
– Polynomials (2 and 3 order)

Fotnote:

• Sjå side 150 for reknereglar for logaritmer. 
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Semilog curves Fig 5.2 in Hamilton
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Log-log curves Fig 5.3 in Hamilton
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Log-reciprocal curves Fig 5.4 in Hamilton
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The horizontal lines give the value of 
y when x grows towards infinity: the 
asymptote for y
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Second order polynomials Fig 5.5 in Hamilton
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Third order polynomials Fig 5.6 in Hamilton
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Fotnote: 

• Merk, tredjegradspolynom kan vere vanskeleg 
å nytte av reint tekniske grunnar. Det kan skape 
utliggjarar med innverknad på regresjonen og 
det vil introdusere eit sterkt element av 
multikollinearitet. 
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Choice of transformation
• Scatter plot or theory may provide advice
• Otherwise: transformation to symmetry 

gives the best option
• The regression reported in table 3.2 in 

Hamilton proved to be problematic
• Regression with transformed variables 

can reduce the problems
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Choice of transformation in table 3.2 in Hamilton

X7* = ln (X5/X0)X7 = Relative change in #people

X6 = X5 – X0 (= # people in 1980) X6 = Change in # people 

X5*= ln(X5) provides approximate symmetryX5 = # people in 1981 

Transformations do not work for dummiesX4 = Pensioner  

Transformations are inappropriateX3 = Education 

X2*= X2
0.3 provides approximate  symmetry X2 = Water use 1980 

X1*= X1
0.3 provides approximate  symmetryX1 = Income

Y*=Y0.3 provides approximate symmetryY = Water use 1981
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Regression with transformed variables
Tab 5.2 in Hamilton

,0013,485,263,916Ln(people81/people80)

,0006,469,110,715Ln(# of people81)

,395,852,119,101Retired?

,024-2,257,016-,036Education in Years

,00021,508,029,626Wateruse800.3

,0003,976,130,516Income0.3

,0004,822,3851,856(Constant)

Sig. t
Std. 

ErrB
Dependent Variable: 
(Wateruse81)0.3
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Table 3.2 (Hamilton p74)

Dependent Variable: 
Summer 1981 Water Use B

Std. 
Error t Sig.

(Constant) 242.220 206.864 1.171 .242

Income in Thousands 20.967 3.464 6.053 .000

Summer 1980 Water Use .492 .026 18.671 .000

Education in Years -41.866 13.220 -3.167 .002

Head of house retired? 189.184 95.021 1.991 .047

# of People Resident, 1981 248.197 28.725 8.641 .000

Increase in # of People 96.454 80.519 1.198 .232

How do we interpret the coefficient of ”Increase in # of People” ?

What leads to less water use after the crisis?

Beta

.184

.584

-.087

.058

.277

.031
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Fotnote: 
• I Hamilton sine tabellar er det ei kolonne som gir gjennomsnittet av 

variablane. Den må vi i SPSS leggje til sjølve om vi ønskjer den. 

• Samanlikna med 2-variabel eksempelet ovanfor ser vi

• Determinasjonskoeffisienten har auka frå 0.6138 til 0.6773

• Koeffisientane for inntekt og vassforbruk1980 har ikkje endra seg 
substansielt

• Koeffisientane utanom konstanten og auke i tal personar er 
signifikant ulik 0 og store nok til at dei har substansiell interesse

• Konstantleddet må vi alltid ha med

• Kva skal vi gjere med ” Increase in # of People” ? (droppe eller ikkje)

• Gitt førkrisenivå i vassforbruk vil etterkriseforbruk minke der 
inntekta går ned, utdanninga går opp og hovudpersonen i hushaldet 
ikkje er pensjonist. 
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Fotnote: 

• Predikert Y er her ein indeks som viser til høge 
gjennomsnittlege x-verdiar.

• Når spreiinga av residualen varierer systematisk med 
verdiane på x-variablane har vi heteroskedastisitet. 

Øverst:
• Spreiinga til residualen aukar med aukande predikert y. 
Nederst:
• Spreiinga til residualen er om lag den same for alle 

verdiar av predikert y
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Other consequences of the 
transformations

• Two cases with large influence on the 
coefficient for income (large DFBTAS) do not 
have such influence (fig 4.11 and 5.9) 

• One case with large influence on the coefficient 
for water use in 1980 do not have that large 
influence (fig 4.12 and 5.10) 

• Transformation to symmetrical distributions will 
often solve many problems – but not always

• And it creates a new one: interpretation
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Interpretation
• The model estimate now looks like this

0.3 0.3 0.3
1 2 3

5
4 5

0

1.856 0.516 0.626 0.036

0.101 0.715ln( ) 0.916ln( )

i i i i

i
i i

i

y x x x

x
x x

x

   

  

• The interpretation of the coefficients are not so 
straightforward any more. For example: the 
measurement units of the parameters have been 
changed

• The simplest way of interpreting is to use conditional 
effect plots

Fotnote: 

• Tolking: Kvar einings auke i ln(#personar) gir 
ein auke på 0.72 einingar i anslaget på =.3-
potensen av vassforbruket om alt anna er likt. 

• Tungvint!
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Conditional effect plot 
• Should be used to study the relationship 

between the dependent variable and one x-
variable with the rest of the x-variables given 
fixed values

• Typically we are interested in the relationship 
x-y when the other variables are given values 
that
– Maximizes y
– Are averages values of of the x-variables
– Minimizes y 
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,2321,19880,51996,454Increase in # of People

,0008,64128,725248,197# of People Resident, 1981

,0471,99195,021189,184head of house retired?

,002-3,16713,220-41,866Education in Years

,0006,0533,46420,967Income in Thousands

,00018,671,026,492Summer 1980 Water Use

,2421,171206,864242,220(Constant) 

Sig.t Std. ErrorB

Unstandardized 
Coefficients

Dependent Variable: Summer 
1981 Water Use

Example based on the regression in table 3.2 in Hamilton
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To produce conditional effect plots it is useful to 
have a table of minimum, maximum and 

average variable values

3,11101496# People living in 1980

-,043-3496Relative increase in # of people

3,07101496# of people resident, 1981

,2910496Head of household retired?

14,00206496Education in years

23,081002496Income in thousands

2732,0612700200496Summer 1980 water use

2298,3910100100496Summer 1981 water use

MeanMaximumMinimumN
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The equation

• Estimated Y = 242,22 + 0,492X1 + 20,967X2 -
41,866X3 + 189,184X4 + 248,197X5 + 96,454X6

• Maximizing the effect of X1 on Y require maximum of 
X2 , X4 , X5 , X6 and minimum of X3

• Average values of the effect of X1 on Y is obtained by 
inserting average values of X2 , X3 , X4 , X5 , X6

• Minimizing the effect of X1 on Y require minimum of 
X1 , X2 , X4 , X5 , X6 and maximum of X3
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Y = 242.22 + 0.492X + 20.96710 - 41.8667 + 189.1841 + 248.1975 + 96.4541
Y = 242.22 + 0.492X + 20.9671 - 41.86618 + 189.1840 + 248.1971 + 96.4540
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When x is dummy coded

• Estimated Y = 242,22 + 0,492X1 + 20,967X2 -
41,866X3 + 189,184X4 + 248,197X5 + 96,454X6

• Estimated Y = constant + 189,184X4

– X4 can take the values of 0 or 1

X4=0 X4=1
Y = constant

Y = constant + 189,184
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Water usage according to income 
controlled for the effect of other variables

6040200
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6040200
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6040200

2600

2400

2200
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1800
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y0.3=1.856+0.626(2732)0.3-0.036(14)+0.101(0.294)+0.715ln(3.07)+0.916(ln(3.07)-ln(3.11))+0.516(x)0.3

Relationship when other variables 
have average values 

Fig 5.11 Hamilton
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Which plots might be of interest?

y0.3=(1.856+0.626(200)0.3-0.036(20)+0.101(0)+0.715ln(1)+0.916(ln(1)-ln(10))+0.516(x)0.3)
y0.3=(1.856+0.626(12700)0.3-0.036(6)+0.101(1)+0.715ln(10)+0.916(ln(10)-ln(1))+0.516(x)0.3)
y0.3=(1.856+0.626(2732)0.3-0.036(14)+0.101(0.29)+0.715ln(3.07)+0.916(ln(3.07)-ln(3.11))+0.516(x)0.3)

• The relationship between water usage and income 
controlled for the effect of other variables
– Those minimizing water usage
– Those maximizing water usage
– Average values 

1

2

3
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Comparing three types of usage
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Relationship between water usage and income Fig 5.12 in Hamilton

Spring 2010 ©  Erling Berge 2010 408

The role of the constant in the plot

• The only difference between the three curves is the 
constant (konst)
– In the maximum curve: (konst) = 14.046
– In the minimum curve: (konst) = 4.204
– In the average curve: (konst) = 8.507

 0.3 0.3
10.516i iy konst x 

• The effect of income varies with the value of (konst)
• When we transform the dependent variable all

relationships become interaction effects
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Comparing effects
• For some relationships the standardized 

regression coefficient can be used to compare 
effects, but it is sensitive for biased estimates 
of the standard error

• A more general method is to compare 
conditional effect plots where the scaling of 
the y-axis is kept constant 
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Fig 5.13 Hamilton
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Non-linear models

• If we do not have a model that is linear in the 
parameters other techniques than OLS are needed 
to estimate the parameters

• One may find two types of arguments for such 
models
– Theory about the causal mechanism may say so
– Inspection of the data may point towards one particular 

type of model
• We shall take a look at 

– Exponential models 
– Logistic models
– Gompertz models
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Exponential growth and decay 
Fig 5.14 in Hamilton

10806040200
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0

y=25exp(-0.03x)
y=4exp(0.02x)
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Negative exponential curves Fig 5.15 in Hamilton

10806040200

10

8

6

4

2

0

y=10(1-exp(-0.07x))
y=10(1-exp(-0.02x))
Horizontal line through ( )0, 10
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806040200

0.4

0.3

0.2

0.1

0

-0.1

y=( 0.05
0.05-0.04 )(exp(-0.04x)-exp(-0.05x))

y=( 0.05
0.05-0.11 )(exp(-0.11x)-exp(-0.05x))

To-term exponential curves Fig 5.16 in Hamilton
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Logistic models

• The logistic function is 
written

• As x grows towards 
infinity y will approach 

• When x declines towards 
minus infinity y will 
approach 

• Logistic models are 
appropriate for many 
phenomena
– Growth of biological 

populations
– Scattering of rumours
– Distribution of illnesses

 1 exp
y

x
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Logistic curves Fig 5.17 in Hamilton

10806040200

30
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15
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5

0

•  determines where growth starts 
•  determines how fast the growth is

y= 25
1+10exp(-0.12x)

y= 25
1+50exp(-0.12x)

y= 25
1+10exp(-0.06x)

Horizontal line through ( )0, 25

Y=
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Logistic probability model

• If it is determined that  ==1 y will vary between 0 
and 1 as x goes from minus infinity to plus infinity

• Logistic curves can then be used to model 
probabilities

 1 expi
i

y
x 
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Gompertz curves

• Gompertz curves are sigmoid curves like the logistic, 
but growth increase and growth reduction occur at 
different rates. Hence they are not symmetric

xey e
   

• Parameters  and  have the same interpretation 
as in the logistic model
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Gompertz curves Fig 5.18 Hamilton
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Estimation of non-linear models 

• The criterion of fit is still minimum RSS
• It is uncommon to find analytical expressions 

for the parameters. One has to guess at a 
start value and go through several iterations to 
find which parameter value will give minimum 
RSS

• Good starting values are as a rule necessary, 
and everything from theory to inspection of 
data are used to find them
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Per cent women with at least 1 child according to the 
woman’s age and year of birth (England og Wales) 

-----89 86 -45 

----90 89 86 78 40 

---83 88 87 83 76 35 

--68 75 82 82 75 67 30 

-39 45 53 60 59 48 39 25 

11 13 18 19 17 13 9 7 20 

0000000015 

19651960195519501945194019301920
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Estimating Gompertz-models for cohorts (1) 

15,00 20,00 25,00 30,00 35,00 40,00

0,00

20,00

40,00

60,00

80,00
% FEMALE COHORT WITH 
>=1 CHILD
WOMEN'S AGE

Predicted Values
WOMEN'S AGE

1920 cohort, observed and 
estimated values:

Y= 79.8exp(-461.2exp(-0.26x)) 

Y= per cent with at least 1 child

X= age
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Estimating Gompertz-models for cohorts (2) 

10,00 20,00 30,00 40,00 50,00

0,00

20,00

40,00

60,00

80,00

100,00
Predicted Values
WOMEN'S AGE

1920 and 1945 cohorts, 
estimated values
Y= 79.8exp(-461.2exp(-0.26x)) 
Y= 90.4exp(-468.1exp(-0.28x)) 

Y= per cent with at least 1 child

X= age
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Model estimation and fit
• To evaluate a theoretically developed model
• To predict y within or outside the observed range 

of variation for x
• Substantial or comparative interpretation of the 

parameters of the model
– On cohorts that are not finished with their births (thus 

predicting outside the observed range of x) 
– We can use the model to compare parameter values 

of different cohorts
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Parameter interpretation 
Table 5.6 Hamilton

0.1860.388.91955

0.23144.987.51950

0.28468.190.41945

0.31942.089.11940

0.27538.086.51930

0.26461.279.81920

 = growth speed = ?= upper limitCohort

Fotnote: 

• Alfa parameteren gir oss den øvre asymptoten 
for predikert y, dvs den maksimale 
prosentdelen av ein kohort kvinner som får 
minst eitt barn. Beta parameteren seier noko 
om kor raskt kohorten får barna sine. 
Gammaparameteren har ikkje noka kjent 
substansiell tolking.
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The process of entry into first marriage

Gudmund Hernes

American Sociological Review, 1972, Vol 37(April): 173-182

Predicted by a non-
homogenous diffusion model
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Birth rates in Sunndal, Meråker, Verran, and 
Rana 1968-71

• Estimated with a 
Hadwiger function

• Ref.:  Berge, 
Erling. 1981. The 
Social Ecology of 
Human Fertility in 
Norway 1970. 
Ph.D. 
Dissertation. 
Boston: Boston 
University. 
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Conclusions of chapter 5 (1) 
• Data analysis often starts with linear models. They are 

the simplest.
• Theory or exploratory data analysis (band regression, 

smoothing) can tell us if curvilinear or non-linear 
models are needed

• Transformation of variables give curvilinear 
regression. This can counteract several problems: 
– Curvilinear relationships
– Case with large influence
– Non-normal errors
– Heteroscedasticity 
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Conclusions of chapter 5 (2)

• Non-linear regression use iterative procedures 
to find parameter estimates

• The procedures need initial values and are  
often sensitive for the initial values

• The interpretation of the parameters may be 
difficult. Graphs showing the relationship for 
different parameter values will provide 
valuable help for the interpretation 
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Ch 6 Robust Regression

• Has been developed to work well in situations where 
OLS breaks down. Where the OLS assumptions are 
satisfied robust regression are not as good as OLS, 
but not by very much

• Even if robust regression is better suited for those 
who do not want to put much effort into testing the 
assumptions, it is so far difficult to use

• Robust regression has focused on residuals with 
heavy tails (many cases with high influence on the 
regression)

Fotnote: 

• Oversikten her skal hjelpe oss til å skjøne 
konsekvensane av utliggjarar og case med høg 
leverage, og vi skal sjå at vi kan gjere noko 
med det om nødvendig. 

Spring 2010 ©  Erling Berge 2010 432



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 217

Spring 2010 ©  Erling Berge 2010 433

Regression of mortality on air pollution
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SanJose R Sq Linear = 0,023

Figure 6.1 
Hamilton

OLS: 
Y=918.4+
7.97ln(air pollution)

Fotnote: 

• Determinasjonskoeffesienten for regresjonen er på 
0.02 (2%). Modellen er ikkje god. Den er påverka av 
fleire utliggjarar. Skal vi utelate utliggjarane? 
Utliggjarane nedst til høgre viser seg å vere byar i 
California. Det bør gi oss mistanke om utelatne 
variablar. Skal vi gå på jakt etter den utelatne 
variabelen? I kva grad vil eksklusjon av utliggjarar 
påverke resultatet? I kva grad ønskjer vi å finne eit 
sterkt samband mellom mortalitet og ureining?

• Subjektive avgjerder aukar sjansen for bias i 
konklusjonane. Eit alternativ er robust regresjon.
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Robust regression of mortality on air pollution

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00

800,00
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AGE-ADJUSTED 
MORTALITY/100K
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Robust_Pred_Y
LN_hc_pollution

R Sq Linear = 0,023

Figure 6.2 
Hamilton

OLS: 

Y=918.4+

7.97ln(air pollution)

Robust Regression: 

Y= 891.7+19.46ln(air pollution)

Fotnote: 

• OLS minimerer RSS Σei
2 . RR minimerer ein 

vekta sum av residualane Σwiei
2
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Robust regression and SPSS

• SPSS do not have a particular routine that performs 
robust regression

• It can possibly be done within the Generalized linear 
models procedure <but I have not tested it>

• It can be done by weighted OLS regression, but then 
it is required that we make the weight functions and 
go through the iterations one by one including 
computation of weights every time

• This procedure will be outlined below
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ROBUST AND RESISTANT

• RESISTANT methods are not affected by small 
errors or changes in the sample data

• ROBUST methods are not affected by small 
deviations from the assumptions of the model

• Most resistant estimators are also robust in relation 
to the assumption about normally distributed 
residuals

•
• OLS  is neither ROBUST nor RESISTANT
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Fotnote: 

1.Robuste estimatorar bør vere konsistente og 
rimeleg effektive når modellen er rett

2.Dei bør i liten grad la seg influere av små avvik 
frå rett modell og

3.Ikkje bli drastisk påverka av store avvik
(frå Huber (1981) side 189 i Hamilton)
• OLS metoden taper i effektivitet (minste 

varians) når vi har ”tunge” halar i fordelinga av 
residualen. 
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Outliers is a problem for OLS
Outliers affect the estimates of
• Parameters
• Standard errors (standard deviation of parameters)
• Coefficient of determination
• Test statistics
• And many other statistics

Robust regression tries to protect against this 
by giving less weight to such cases,  
not by excluding them 
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Protection against NON-NORMALE 
residuals

Robust methods can help when
• the tails in the distribution of the residuals are 

heavy, i.e. when it is too many outliers 
compared to the normal distribution

• Unusual X-values have leverage and may 
cause problems

But for other causes of non-normality 
robust methods will not help

Spring 2010 ©  Erling Berge 2010 442

Estimation methods for robust regression

• M-estimation (maximum likelihood) minimizes a 
weighted sum of the residuals. This can be 
approximated by the weighted least squares 
method (WLS)

• R-estimation (based on rank) minimizes a sum 
where a weighted rank is included. The method is 
more difficult to use than M-estimation

• L-estimation (based on quantiles) uses linear 
functions of the sample order statistics (quantiles) 
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IRLS-
Iterated Reweighted Least Squares

M-estimation by means of IRLS needs   
1. Start values from OLS. Save the residuals
2. Use OLS residuals to find weights. Larger 

residuals gives less weight 
3. Find new parameter values and residuals with  

WLS
4. Go to step 2 and find new weights from the new 

residuals, go on to step 3 and 4, until changes in 
the parameters become small 

Iteration: to repeat a sequence of operations
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IRLS
• IRLS is in theory equivalent to M-estimation
• To use the method we need to compute 
• Scaled residuals, ui , and a
• Weight function, wi ,that gives least weight to 

the largest residuals
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Scaling of residuals I

• Scaled residual ui

– s is the scale factor and ei residual

• The scale factor in OLS is the estimate of 
the standard error of the residual:   nb! se

is not resistant 

• A resistant alternative is based on MAD, 
"median absolute deviation"

e

RSS
s

n K




 i iMAD median e median e | |

i
i

e
u

s
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Scaling of residuals II

The scale factor (standard error of the distribution) 
Using a resistant estimate will be 

• s = MAD/ 0.6745 = 1.483MAD
and the scaled residual

• ui = [ei / s ] = (0.6745*ei)/MAD
In a normal distribution s= MAD/ 0.6745 will estimate 
the standard error correctly like se
In case of non-normal errors s= MAD/ 0.6745 will be better. 

This is a resistant estimate, se is not resistant 

 i iMAD median e median e | |
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Weight functions I

• Properties is measured in relation to OLS on 
normally distributed errors. 

• The method should be “almost as good” as 
OLS on normally distributed errors and much 
better when the errors are non-normal

• Properties are determined by a “calibration 
constant” (c in the formulas)
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Weight functions  II

• OLS-weights: wi = 1 for all i 
• Huber-weights: weights down when the scaled  

residual is larger than c, c=1,345 gives 95% of the 
efficiency of OLS on normally distributed errors

• Tukey’s bi-weighted estimates get 95% of the 
efficiency of OLS on normally distributed errors by 
gradually weighting down scaled errors until |ui| ≤ c = 
4.685  and by dropping cases where the residual is 
larger  
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Huber-weights
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Tukey weights
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• Tukey weighting in IRLS is sensitive for start values of the 
parameters (one may end up at local minima) 
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Standard errors and tests in IRLS

• The WLS program cannot estimate standard 
errors and test statistics correctly by IRLS

• A procedure that works is described by 
Hamilton on page 198-199

Fotnote: 

• Dersom modellen er feil, kva er det vi 
estimerer? β = lim E[b] når n går mot uendeleg. 
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Use of Robust Estimation

• If OLS and Robust estimates are different it means 
that outliers have influence on the OLS results making 
them unreliable. Results cannot be trusted

• Robust predicted values will better portray the bulk of 
the data

• Robust residuals will be better at discovering which 
cases are unusual 

• Weights from the robust regression will show which 
cases are outliers

• OLS and RR can support each other

Fotnote: 

• Men RR vernar ikkje mot alle problem. Dersom 
samanhengen er ikkje lineære vil ikkje robust 
estimering av ein lineær modell gje meining. 
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Fig 6.9 Hamilton: OLS and RR on untransformed 
data
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Fotnote: 

• RR vil heller ikkje verne mot høg leverage. 
Dersom høg leverage går saman med 
uvanlege y-verdiar kan caset ta over styringa 
med regresjonen. 
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Fig 6.10 Hamilton: OLS and RR on untransformed 
data when two outliers are removed
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Fotnote: 

• Når vi utelet to case med høg leverage klarer 
RR seg betre enn OLS. 
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RR do not protect against leverage

• RR with M-estimation protects against unusual y-values 
(outliers) but not necessarily against unusual x-values 
(leverage)

• Efforts to test and diagnose are still needed 
(heteroscedasticity is still a problem for IRLS)

• Studies of the data and transformation to symmetry will 
reduce the risk of problems appearing

• No method is “safe” if it is used without forethought and 
diagnostic studies of data 
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Robust Multippel Regresjon
X1 RELATIVE HC POLLUTION POTENTIAL (natural log)

X2 AVG. YEARLY PRECIP. INCHES

X3 AVG. JANUARY TEMPERATURE, F

X4 MEDIAN EDUCATION OF POP 25+

X5 % NON-WHITE (square root)

X6 POPULATION PER HOUSEHOLD

X7 % 65 AND OVER

X8 % SOUND HOUSING UNITS

X9 PEOPLE PER SQUARE MILE (natural log)

X10 AVG. JULY TEMPERATURE, F

X11 % WHITE COLLAR EMPLOYMENT

X12 % FAMILIES WITH INCOME<$3000 (negative reciprocal root)

X13 AVG RELATIVE HUMIDITY, %
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Fotnote: 

• Mogeleg forklaringsvariablar for mortaliteten. 
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Multiple OLS regression with transformed variables:
effect of transformation
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OLS with backward elimination gives

Dependent Variable: 
AGE-ADJUSTED MORTALITY/100K

B Std. 
Error

t Sig.

(Constant) 986,261 82,674 11,929 ,000

LN_hc_pollution 17,469 4,636 3,768 ,000

AVG. YEARLY PRECIP. INCHES 2,352 ,640 3,677 ,001

AVG. JANUARY TEMPERATURE, F -2,132 ,504 -4,228 ,000

MEDIAN EDUCATION OF POP 25+ -17,958 6,204 -2,895 ,005

SQRT_pct_non_white 27,335 4,398 6,215 ,000

• Robust regression gives predicted y:
• Y= 1001.8+17.77x1i+2.32x2i-2.11x3i-19.1x4i+26.2x5i

Fotnote: 
• AGE-ADJUSTED MORTALITY/100K means age-

adjusted mortality per 100000 population. 
• LN_hc_pollution = Ln of hydrocarbon pollution 

potential, determined as a product of emitted volume 
of pollutant per square kilometre times a dispersion 
factor (see note 2 to ch 6 in Hamilton)

• Because backward elimination is used the p-values 
are misleadingly low. (See chapter 3)

• We can use the Bonferroni inequality to correct for 
this: p-values multiplied with number of variables 
tested gives an upper bound for the level of 
significance 
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Multiple OLS regression with transformed variables
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Four estimates of the relationship 
mortality – air pollution

OLS Robust

1 variable 7.97 19.46

5 variables 17.47 17.77

• In the five-variable model there are new cases  with 
influence on the line of regression 

• Removing the 5 cases that have the highest  
leverage parameter (hi) do not give substantial 
changes in the coefficients

• Note that in RR the 
bivariate regression 
comes pretty close to the 
result of the multivariate 
regression

Effect of air pollution
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Robust Regression vs 
Bounded Influence Regression

• Robust Regression protect against the effect 
of outliers (unusual y-values) if these do not 
go together with unusual x-values

• Bounded Influence Regression is designed to 
protect against influence from unusual 
combinations of x-values

Spring 2010 ©  Erling Berge 2010 468

BI - Bounded Influence Regression

• BI-methods are made to limit the influence of 
high leverage cases (large hi = high leverage)

• The simplest way of doing this is to modify the 
Huber-weights or Tukey-weights in the IRLS 
procedure for RR (robust regression) with a 
factor based on the leverage statistic
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Bounded influence: modification of weights

• Expand the weight function with a weight based on the 
leverage statistic  hi

• wH
i = 1 if hi ≤ cH

• wH
i = (cH/ hi) if hi > cH

• cH is often set to the 90% percentile in the distribution 
of hi

• Then the IRSL weight becomes wi wH
i where wi is 

either the Tukey- or Huber-weight that changes from 
iteration to iteration while wH

i is constant 
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Bounded influence as a diagnostic tool

• Estimation of standard errors and test statistics 
becomes even more complicated than for the 
M-estimators mentioned above

• We can use BI estimates as a descriptive tool 
to check up on other estimates

• One (somewhat) extreme example: PCB 
pollution in river mouths in 1984 and 1985 
(Hamilton table 6.4)
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Fig 6.15 and 6.16 Hamilton

0,00 5000,00 10000,00 15000,00 20000,00

TOTAL PCBS 1984 (PPB)

0,00

200,00

400,00

600,00

800,00

TO
TA

L 
P

C
B

S
 1

98
5 

(P
P

B
)

Boston Harbor

R Sq Linear = 0,384

0,00 5000,00 10000,00 15000,00 20000,00

TOTAL PCBS 1984 (PPB)

0,00

200,00

400,00

600,00

800,00

TO
TA

L 
P

C
B

S
 1

98
5 

(P
P

B
)

Boston Harbor

Robust M-
estimate BI regression

Fotnote: 

1)Y-verdien skil seg ikkje ut, det er x-verdien som 
er uvanleg. Leverage observatoren er på 0,997. 
Verken OLS eller Robust M-estimering 
oppdagar dette

2)Med BI-metoden vert Boston Harbor oppdaga 
og vekta ned
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Fig 6.17 Hamilton
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Fotnote: 

• Dersom vi transformerer variablane vil ikkje 
OLS og BI regresjonen skilje seg frå kvarandre 
vesentleg. 

• I staden for å gjennomføre ein BI estimering 
kan ein i første runde av M-estimeringa droppe 
alle case med Cook’s D > 1 

• Boston Harbor med ein D=6117 ville da bli 
ekskludert. 
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Conclusions
• When data have many outliers robust methods will have better 

properties than OLS
– They are more effective and give more accurate confidence intervals and 

tests of significance  

• Robust regression can be used as a diagnostic tool
– If OLS and RR agree we can have more confidence in the OLS 

results
– If they disagree we will 

• Know that a problem exist
• Have a model that fits the data better and identifies the 

outliers better

• Robust methods does not protect against problems that are due to 
curvilinear or non-linear models, heteroscedasticity, and 
autocorrelation 
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Logistic regression II

• Hamilton Ch 7 p217-242  
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Definitions I

• The probability that person no i shall have the value 1 
on the variable Yi will be written Pr(Yi =1).

• Then Pr(Yi ≠ 1) = 1 - Pr(Yi=1) 

• The odds that person no i shall have the value 1 on 
the variable Yi, here called Oi, is the ratio between two 
probabilities 

   
 

Pr 1
1

1 Pr 1 1
i i

i i
i i

y p
y

y p


  

  
O
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Definitions II

• The LOGIT , Li , for person no i 
(corresponding to Pr(Yi=1)) is the natural 
logarithm of the odds, Oi , that person no i has 
the value 1 on variable Yi . This is written:
Li = ln(Oi) = ln{pi/(1-pi)}

• The model assumes that Li is a linear function 
of the explanatory variables xji , 

• i.e.:
• Li = 0 + j j xji , where j=1,..,K-1, and  i=1,..,n 
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Logistic regression: assumptions

• The model is correctly specified
• The logit is linear in its parameters

• All relevant variables are included

• No irrelevant variables are included

• x-variables are measured without error 

• Observations are independent

• No perfect multicollinearity

• No perfect discrimination

• Sufficiently large sample

Fotnote: 

• Cases with large influence may be a problem.
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Assumptions that cannot be tested

• Model specification
• All relevant variables are included

• x-variables are measured without error 

• Observations are independent

Two will be tested automatically. 

If the model can be estimated there is

• No perfect multicollinearity and

• No perfect discrimination 
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample

• High degree of multicollinearity
– Leading to large standard errors (imprecise estimates)

– Multicollinearity is discovered and treated in the same 
way as in OLS regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise estimates)

– Will be discovered automatically by SPSS
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Fotnote: 
• Discovering multicollinearity

1.Correlations among x-variables (not very reliable)

2.Correlations among parameters (do not say anything 
about the cause of multicollinearity)

3.Check tolerance by regressing every x-variable on the 
rest of the x-variables. Find Rk

2 (the coefficient of 
determination). Low tolerance (1-Rk

2) will indicate a 
potential problem. 

4.We can repair the problem with more data, combining 
variables or testing groups of variables where the 
impact of single variables cannot be identified. 
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Assumptions that can be tested

• Model specification
– logit is linear in the parameters

– no irrelevant variables are included

• Sufficiently large sample 
– What constitutes a sufficiently large sample is not always 

clear. 

– It depends on how the cases are distributed between 0 and 
1 categories. If one of these is too small there will be 
problems estimating partial effects. 

– It also depends on the number of different patterns in the 
sample and how cases are distributed across these
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Sample size in logistic regression 

Large sample properties

• The good properties of ML estimates of binary 
logistic regression models are large sample 
properties that obtain as sample size goes 
towards infinity. 

• What happens when you have too small a 
sample is largely unknown

• Long (1997) puts 100 cases as an absolute 
lower bound
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Calculation of lower bounds
• A lower bound of 100 must be adjust according to number of 

variables in the model and the distribution of cases on the 
dependent variable. 

• Peduzzi et al. (1996) suggest:
• Let p be the smallest of the proportions of negative or positive 

cases in the population and k the number of covariates (the 
number of independent variables), then the minimum number of 
cases to include is:

• N = 10 k / p
• If the resulting number is less than 100 you should increase it to 

100 
• Or you may say that the maximum number of variables you can 

include in the model will be 
• k = N*p/10
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LOGISTIC REGRESSION: TESTING (1)

• Testing implies an assessment of whether  statistical 
problems leads to departure from the assumptions 

Two tests are useful

• (1) The Likelihood ratio test statistic: 


– Can be used analogous to the F-test
• (2) Wald test  

– The square root of this can be used analogous to 
the t-test but it follows a normal distribution
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Logistic Regression in SPSS I

Case Processing Summary

153 100.0

0 .0

153 100.0

0 .0

153 100.0

Unweighted Cases
a

Included in Analysis

Missing Cases

Total

Selected Cases

Unselected Cases

Total

N Percent

If weight is in effect, see classification table for the total
number of cases.

a. 

Dependent Variable Encoding

0

1

Original Value
OPEN

CLOSE

Internal Value
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Logistic Regression in SPSS IIa

Iteration Historya,b,c

209.212 -.275

209.212 -.276

209.212 -.276

Iteration
1

2

3

Step
0

-2 Log
likelihood Constant

Coefficients

Constant is included in the model.a. 

Initial -2 Log Likelihood: 209.212b. 

Estimation terminated at iteration number 3 because
parameter estimates changed by less than .001.

c. 
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Logistic Regression in SPSS IIb
Classification Tablea,b

87 0 100.0

66 0 .0

56.9

Observed
OPEN

CLOSE

SCHOOLS SHOULD
CLOSE

Overall Percentage

Step 0
OPEN CLOSE

SCHOOLS SHOULD
CLOSE Percentage

Correct

Predicted

Constant is included in the model.a. 

The cut value is .500b. 

Variables in the Equation

-.276 .163 2.864 1 .091 .759ConstantStep 0
B S.E. Wald df Sig. Exp(B)

Variables not in the Equation

12.683 1 .000

12.683 1 .000

livedVariables

Overall Statistics

Step 0
Score df Sig.
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Logistic Regression in SPSS IIIa

Iteration Historya,b,c,d

195.684 .376 -.034

195.269 .455 -.041

195.267 .460 -.041

195.267 .460 -.041

Iteration
1

2

3

4

Step
1

-2 Log
likelihood Constant lived

Coefficients

Method: Entera. 

Constant is included in the model.b. 

Initial -2 Log Likelihood: 209.212c. 

Estimation terminated at iteration number 4 because
parameter estimates changed by less than .001.

d. 
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Logistic Regression in SPSS IIIb

Omnibus Tests of Model Coefficients

13.944 1 .000

13.944 1 .000

13.944 1 .000

Step

Block

Model

Step 1
Chi-square df Sig.

Model Summary

195.267a .087 .117
Step
1

-2 Log
likelihood

Cox & Snell
R Square

Nagelkerke
R Square

Estimation terminated at iteration number 4 because
parameter estimates changed by less than .001.

a. 
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Logistic Regression in SPSS IIIc
Classification Table a

59 28 67.8

29 37 56.1

62.7

Observed
OPEN

CLOSE

SCHOOLS SHOULD
CLOSE

Overall Percentage

Step 1
OPEN CLOSE

SCHOOLS SHOULD
CLOSE Percentage

Correct

Predicted

The cut value is .500a. 

Variables in the Equation

-.041 .012 11.399 1 .001 .960

.460 .263 3.069 1 .080 1.584

lived

Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: lived.a. 

Fotnote: 

• SQRT (11.399) = 3.376 = t in Hamilton table 7.1
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Conditional Effect Plot

• Set all x-variables except xk to fixed values and 
enter these into the equation for the logit

• Plot Pr(Y=1) as a function of xk i.e. 

• P =1/(1+exp[-L]) = 1/(1+exp[-konst - bkxk])

for all reasonable values of xk ,

“konst” is the constant obtained by entering into 
the logit the fixed values of variables other than 
xk
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Excerpt from Hamilton Table 7.4

B S.E. Wald df Sig. Exp(B) Minimum Maximum Mean

lived -,040 ,015 6,559 1 ,010 ,961 1,00 81,00 19,2680

educ -,197 ,093 4,509 1 ,034 ,821 6,00 20,00 12,9542

contam 1,299 ,477 7,423 1 ,006 3,664 ,00 1,00 ,2810

hsc 2,279 ,490 21,591 1 ,000 9,763 ,00 1,00 ,3072

nodad -1,731 ,725 5,696 1 ,017 ,177 ,00 1,00 ,1699

Constant 2,182 1,330 2,692 1 ,101 8,866

Logit: 

L = 2.182 -0.04*lived -0.197*educ +1.299*contam +2.279*hsc -1.731*nodad

Here we let ”lived” vary and set in reasonable values for other variables
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y=1/(1+exp(-(2.182-0.04x-0.19712.95+1.2990.28+2.2790.31-1.7310.17)))
y=1/(1+exp(-(2.182-0.04x-0.1976+1.2991+2.2791-1.7310)))
y=1/(1+exp(-(2.182-0.04x-0.19720+1.2990+2.2790-1.7311)))

Conditional effect plot from Hamilton table 7.4 (fig7.5): 
effect of living for a long time in town

Mean

Max

Min 
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Conditional effect plot from Hamilton table 7.4 (fig7.6): 
effect of pollution on own land
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y=1/(1+exp(-(2.182-0.0481-0.19720+1.299x+2.2790-1.7311)))
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Coefficients of determination
• Logistic regression does not provide measures 

comparable to the coefficient of determination in OLS 
regression

• Several measures analogous to R2 have been 
proposed

• They are often called pseudo R2

• Hamilton uses Aldrich and Nelson’s   
pseudo R2 = 2/(2+n)
where 2 = test statistic for the test of the whole 
model against a model with just a constant and n= 
the number of cases

Fotnote: 

• Hosmer-Lemeshow goodness-of-fit statistic. 
This goodness-of-fit statistic is more robust 
than the traditional goodness-of-fit statistic 
used in logistic regression, particularly for 
models with continuous covariates and studies 
with small sample sizes. It is based on 
grouping cases into deciles of risk and 
comparing the observed probability with the 
expected probability within each decile. 
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Some pseudo R2 in SPSS
• SPSS reports Cox and Snell, Nagelkerke, and in 

multinomial logistic regression also McFadden’s 
proposal for R2

• Aldrich and Nelson’s pseudo R2 can easily be 
computed by ourselves [pseudo R2 = 2/(2+n)]

Pseudo R-Square

Cox and Snell ***

Nagelkerke ***

McFadden ***

Model Summary

Step
-2 Log 

likelihood

Cox & 
Snell R 
Square

Nagelkerke 
R Square

1 *** *** ***
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Statistical problem: linearity of the logit
• Curvilinearity of the logit can give biased parameter 

estimates

• Scatter plot for y - x is not informative since y only 
has 2 values

• To test if the logit is linear in an x-variable one may 
do as follows
– Group the x variable

– For every group find average of y and compute the logit for 
this value

– Make a graph of the logits against the grouped x
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Y=”Closing school” vs. x= ”Years lived in town”
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Scatter plot is not 
very informative
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Linearity in logit: example

SCHOOLS 
SHOULD 
CLOSE

YEARS LIVED IN WILLIAMSTOWN (Banded)

<= 3 4-6 7-11 12-22 23-33 34-44 45+

N OPEN 7 14 7 22 11 13 13

N CLOSE 13 14 10 17 8 2 2

Within 
group Mean (=p) ,65 ,50 ,59 ,44 ,42 ,13 ,13

Logit Ln(p/(1-p)) 0,619 0 0,364 -0,241 -0,323 -1,901 -1,901

Recall: Logit = Li = ln(Oi) = ln{pi/(1-pi)}
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Is the  
logit 
linear in 
”years 
lived in 
town”?

Maybe! 
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In case of curvilinearity the odds ratio is non-constant

Assume the logit is curvilinear in education. Then the odds ratio for 
answering yes, adding one year of education, is:
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Statistical problems: influence

• Influence from outliers and unusual x-values 
are just as problematic in logistic regression 
as in OLS regression

• Transformation of x-variables to symmetry will 
minimize the influence of extreme variable 
values

• Large residuals are indicators of large 
influence

Spring 2010 ©  Erling Berge 2010 508

Influence: residuals

• There are several ways to standardize residuals
– ”Pearson residuals” 

– ”Deviance residuals”

• Influence can be based on 
– Pearson residual 

– Deviance residual

– Leverage (potential for influence): i.e. the  statistic hj
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Diagnostic graphs

Outlier plots can be based on plots of 
estimated probability of Yi=1 (estimated 
Pi) against

• Delta* B ,  Bj , or 

• Delta* Pearson Chisquare,  P(j) , or 

• Delta* Deviance Chisquare,  D(j)

* “Delta” can be translated as “change in” 
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SPSS output

• Cook's = delta B in Hamilton
– The logistic regression analogue of Cook's influence statistic. A 

measure of how much the residuals of all cases would change if a 
particular case were excluded from the calculation of the regression 
coefficients. 

• Leverage Value = h in Hamilton
– The relative influence of each observation on the model's fit. 

• DfBeta(s) is not used by Hamilton in logistic regression
– The difference in beta value is the change in the regression coefficient 

that results from the exclusion of a particular case. A value is computed 
for each term in the model, including the constant. 
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Delta B 
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SPSS output from ”Save” (1)

• Unstandardized Residuals
– The difference between an observed value and 

the value predicted by the model. 

• Logit Residual

ˆ;
ˆ ˆ(1 )

i
i i i i

i i

e
e where e y 

 
   




i is the probability that yi = 1; the “hat” means 
estimated value
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SPSS output from ”Save” (2)

• Standardized = Pearson residual
– The command ”standardized” will make SPSS write a variable called 

ZRE_1 and labelled “Normalized residual” 
– This is the same as the Pearson residual in Hamilton 

• Studentized = [SQRT(delta deviance chisquare)]
– The command ”Studentized” will make SPSS write a variable called 

SRE_1 and labelled “Standardized residual” 
– This is the same as the square root of ”delta Deviance chisquare” in 

Hamilton, i.e. ”delta Deviance chisquare” = (SRE_1)2

• Deviance = Deviance residual
– The command ”Deviance” will make SPSS write a variable called 

DEV_1 and labelled “Deviance value” 
– This is the same as the deviance residual in Hamilton 
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Computation of P(i)

• Based on the quantities 
provided by SPSS we 
can compute ”delta 
Pearson chisquare” 

• Where it says rj in the 
formula we put in 
ZRE_1 and where it 
says hj we put in LEV_1
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Computation of D(i)

1. To find ”delta 
deviance chisquare” 
we square SRE_1

2. Alternatively we put 
in dj=DEV_1 and 
hj=LEV_1 in the 
formula 

Based on the quantities provided by SPSS we 
can compute ”Delta Deviance Chisquare”
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DeltaDevianceChisquare (with/delta B)
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Delta Pearson Chisquare (with/CaseNO)
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Delta Pearson Chisquare (with/ delta B)
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Variables

CaseN
o9
6

CaseN
o6
5

CaseN
o9
9

Y=close 1,00 ,00 ,00

lived 68,00 40,00 1,00

educ 12,00 12,00 12,00

contam ,00 1,00 1,00

hsc ,00 1,00 1,00

nodad ,00 ,00 ,00

PRE_1 ,05 ,86 ,97

COO_1 ,64 ,34 ,41

RES_1 ,95 -,86 -,97

SRE_1 2,46 -2,04 -2,62

Variables

CaseN
o9
6

CaseN
o6
5

CaseN
o9
9

ZRE_1 4,21 -2,48 -5,36

DEV_1 2,42 -1,98 -2,61

DFB0_1 -,32 ,01 -,36

DFB1_1 ,01 ,00 ,00

DFB2_1 ,02 ,01 ,02

DFB3_1 -,08 -,15 -,18

DFB4_1 -,06 -,17 -,19

DFB5_1 -,08 ,16 ,14

DeltaPearsonKjiKv 18,34 6,47 29,20

DeltaAvviksKjiKv 6,07 4,14 6,89

Cases with large influence
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From Cases to Patterns

• The figures shown previously are not 
identical to those you see in Hamilton 

• Hamilton has corrected for the effect of 
identical patterns 
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Influence from a shared pattern of x-
variables

• In a logistic regression with few variables many cases 
will have the same value on all x-variables. Every 
combination of x-variable values is called a pattern

• When many cases have the same pattern, every case 
may have a small influence, but collectively they may 
have unusually large influence on parameter 
estimates

• Influential patterns in x-values can give biased 
parameter estimates 
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Influence: Patterns in x-values

• Predicted value, and hence the residual will be 
the same for all cases with the same pattern

• Influence from pattern j can be found by means 
of
– The frequency of the pattern 
– Pearson residual
– Deviance residual
– Leverage: i.e. the statistic hj
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Finding X-pattern by means of  SPSS
• In the ”Data” – menu find the command ”Identify 

duplicate cases”
• Mark the x-variables that are used in the model and 

move them to ”Define matching cases by”
• Cross for ”Sequential count of matching cases in each 

group” and ”Display frequencies for created variables”
• This produces two new variables. One,  

”MatchSequence”, numbers cases sequentially 1, 2, … 
where several patterns are identical. If the pattern is 
unique this variable has the value 0. 

• The other variable, ”Primary…”, has the value 0 for 
duplicates and 1 for unique patterns
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X-patterns in SPSS; Hamilton p238-242

Frequency Percent
Valid 

Percent
Cumulative

Percent

Duplicate Case 21 13,7 13,7 13,7

Primary Case 132 86,3 86,3 100,0

Total 153 100,0 100,0

Sequential count of
matching cases Frequency Percent

Valid 
Percent

Cumulative 
Percent

0 [115 patterns with 1 case] 115 75,2 75,2 75,2

1 [17 patterns with 2 or 3 cases] 17 11,1 11,1 86,3

2 [17–4=13 patterns with 2 cases] 17 11,1 11,1 97,4

3 [4 patterns with 3 cases] 4 2,6 2,6 100,0

Total 153 100,0 100,0
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Hamilton table 7.6 Symbols

ˆ
jP

2
P

J # unique patterns of x-values in the data (J<=n)

mj
# cases with the pattern j (m>=1)

Predicted probability of Y=1 for case with pattern j

Yj
Sum of y-values for cases with pattern j (= # cases with pattern j and 
y=1)

rj
Pearson residual for pattern j

Pearson Chisquare statistic 

dj
Deviance residual for pattern j

Deviance Chisquare statistic

hi
Leverage for case i

hj
Leverage for pattern j

2
D
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New values for P(i) and D(i)

• By ”Compute” one may calculate the Pearson 
residual (equation 7.19 in Hamilton)  and delta 
Pearson chisquare (equation 7.24 in Hamilton) 
once more. This will provide the correct values

• The same applies for deviance residual 
(equation 7.21) and delta deviance chisquare 
(equation 7.25a)
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Leverage and residuals (1)

• Leverage of a pattern is obtained as number of cases 
with the pattern times the leverage of a case with this 
pattern. The leverage of a case is the same as in 
OLS regression

• hj = mj*hi

• Pearson residual can be found from 
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j j j
j

j j j
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Leverage and residuals (2)

• Deviance residual can be found from

   
2 ln ln

ˆ ˆ1

j j j
j j j j

j j j j

Y m Y
d Y m Y

m P m P
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Two Chi-square statistics

• Pearson Chi-square 
statistics

• Deviance Chi-square 
statistics

• Equations are the same 
for both cases and 
patterns

2 2
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J

P j
j

r




2 2

1

J

D j
j

d
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The Chisquare statistics

Both Chisquare statistics:

1. Pearson-Chisquare P  and

2. Deviance-Chisquare D

• Can be read as a test of the null hypothesis 
of no difference between the estimated 
model and a “saturated model”, that is a 
model with as many parameters as there are 
cases/ patterns
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Large values of measures of influence

• Measures of influence based on changes in 
() the statistic/ parameter value due to 
excluded cases with pattern j 

– Bj “delta B” - analogue to Cook’s D

– P(i) “delta Pearson-Chisquare”

– D(i) “delta Deviance-Chisquare”
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What is a large value of P(i) and D(i)

• Both P(i) and D(i) measure how badly the model 

fits the pattern j. Large values indicates that the model 

would fit the data much better if all cases with this 

pattern were excluded

• Since both measures are distributed asymptotically as 

the chisquare distribution, values larger than 4 

indicate that a pattern affects the estimated 

parameters “significantly”
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Bj “delta B” 

• Measures the 
standardized change 
in the estimated 
parameters (bk) that 
obtain when all cases 
with a given pattern j 
are excluded
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Larger values means larger 
influence

Bj >= 1 must in any case be 
seen as ”large influence” 
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P(i) “Delta Pearson Chisquare”

• Measures the 
reduction in 
Pearson 2 that 
obtains from 
excluding all 
cases with pattern  
j

This image cannot currently be displayed.
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Delta Pearson Chisquare (with delta B) 
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D(i) “Delta Deviance Chisquare”

• Measures changes in 
deviance that obtains 
from excluding all cases 
with pattern j

• This is equivalent to
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K K(j)      
2
( ) 2 LLD j LL

LLK is the LogLikelihood of a model with K parameters estimated 

on the whole sample and LLK(j) is from the estimate of the same 
model when all cases with pattern j are excluded
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Delta Deviance Chisquare (with delta B)
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Influence of excluded cases/patterns 
Logit coefficient

Variables in the 
model

Sample Excluding 
case 99

P(i) =18,34

Excluding 
case 96

P(i) =29,20

lived -,040 -,045 -,052

educ -,197 -,224 -,214

contam 1,299 1,490 1,382

hsc 2,279 2,492 2,347

nodad -1,731 -1,889 -1,658

Constant 2,182 2,575 2,530

2*LL(modell) -142,652 -135,425 -136,124
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Influence of excluded cases/patterns 
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Conclusions (1)
Ordinary OLS do not work well for 
dichotomous dependent variables since
• It is impossible to obtain normally distributed errors or 

homoscedasticity, and since
• The model predicts probabilities outside the interval [0-1]
The Logit model is for theoretical reasons better
• Likelihood ratio tests statistic can be used to test nested 

models analogous to the F-statistic
• In large samples the chisquare distributed Wald statistic [or 

the normally distributed t=SQRT(Wald)] will be able to test 
single coefficients and provide confidence intervals

• There is no statistic similar to the coefficient of determination
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Conclusions (2)
• Coefficient of estimated models can be interpreted 

by
1. Log-odds (direct interpretation)
2. Odds
3. Odds ratio
4. Probability (conditional effect plot)

• Non-linearity, case with influence, and 
multicollinearity leads to the same kinds of 
problems as in OLS regression (inaccurate or 
uncertain parameter values)

• Discrimination leads to problems of uncertain 
parameter values (large variance estimates)

• Diagnostic work is important
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Causal analysis 
Structural equation models

• Hamilton, Lawrence C. 2008. A Low-Tech 
Guide to Causal Modelling.  
http://pubpages.unh.edu/~lch/causal2.pdf
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Causal analysis

• Experiment

– Randomized causal impacts (”treatment”) provide 
precise causal conclusions about effects (”response”) 
if there is significant differences in the mean response 
(effect)

– Experiments can be impossible to achieve due to 
• Practical conditions

• Economic constraints

• Ethical judgements

• Instead one tries to obtain quasi-experiments
– Using for example regression analysis
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Model of causal effects Ref.:

• Research using observations utilize concepts 
from experimental design

– “Treatment”, “Stimulus”

– “Effect”, “Outcome” 

Ref.: 

Winship, Chrisopher, and Stephen L. Morgan 1999 “The Estimation of 
Causal Effects from Observational Data”, Annual Review of Sociology Vol 
25: 659-707
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Experiments allocate ”cases” 
randomly to one of two groups:

• TREATMENT (T)

with observation
– before treatment

– after treatment

• CONTROLL (C) 

with observation
– before non-treatment

– after non-treatment
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The counterfactual hypothesis for the study 
of causality

• Individual “i” can a priori be assumed selected 
for one of two groups
– Treatment group, T, or control group, C.

• Treatment, t, as well as non-treatment, c, can 
a priori be given to individuals both in the T-
and C-group

• In reality we are able to observe t only in the 
T-group and c in the C-group
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Modelling of causal effects:
The counterfactual hypothesis (1)

• There are for each individual ”i” four possible 
outcomes
– Yi(c,C) or Yi(t,C); if allocated to a control group

– Yi(c,T) or Yi(t,T) ; if allocated to a treatment group 

– Only Yi(c, given that ”i” is a member of C) or 

– Yi(t, given that ”i” is a member of T) can be 
observed for any particular individual
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Modelling of causal effects:
The counterfactual hypothesis (2)

More formally one may write the possible 
outcomes for person no i:

 Treatment: t Non-treat.: c
T-group Yt

i  T Yc
i  T 

C-group Yt
i  C Yc

i  C 
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Modelling of causal effects:
The counterfactual hypothesis (3)

• Then the causal effect for individual i is

• i = Yi (t) - Yi (c)

• Only one of these two quantities can be 
observed for any given individual

• This leads to the “counterfactual hypothesis”
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The counterfactual hypothesis: 
concluding

• “The main value of this counterfactual 
framework is that causal inference can be 
summarized by a single question: Given that 
the i cannot be calculated for any individual 
and therefore that Yt

i and Yc
i can be observed 

only on mutually exclusive subsets of the 
population, what can be inferred about the 
distribution of the i from an analysis of Yi and 
Ti ?” (Winship and Morgan 1999:664)
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Modelling of causal effects: from individual 

effects to population averages

• We can observe 
Yi (c |iC), but not Yi (t |iC) 

• The problem may be called a problem of 
missing data

• Instead of individual effects we can estimate 
average effects for the total population
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Modelling of causal effects (1)

• Average effects can be estimated, but usually 
it involves difficulties

• One assumption is that the effect of the 
treatment will be the same for any given 
individual independent of which group the 
individual is allocated to

• This, however, is not self-evident 
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Modelling of causal effects (2)

The counterfactual hypothesis assumes: 

• That changing the treatment group for one 
individual do not affect the outcome of other 
individuals (no interaction)

• That treatment in reality can be manipulated 
(e.g. sex can not be manipulated) 
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Modelling of causal effects (3)

• One problem is that in a sample the 
process of allocating person no i to a 
control or treatment group may affect the 
estimated average effect (the problem of 
selection)

• In some cases, however, the interesting 
quantity is the average effect for those who 
actually receive the treatment
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Modelling of causal effects (4)

• It can be shown that there are two sources 
of bias for the estimates of the average 
effect 

1. An established difference between the C-
and T- groups

2. The treatment works in principle differently 
for those allocated to the T-group compared 
to those in the C-group

– To counteract this one has to develop models of 
how people get into C- and T-groups (selection 
models)
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Modelling of causal effects (5)

• A general class of methods that may be used 
to estimate causal effects are the 
regression models

• These are able to “control for” observable 
differences between the C- and T- groups, 
but not for unequal response to treatment 
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Causal modelling

• “path analysis” or “structural equations 
modelling” go back to the 60ies 

• Jöerskog and Sörbom: LISREL
– Use maximum likelihood to estimate model 

parameters maximising fit to the variance-
covariance matrix

– Commonly available in statistical packages 
• Covariance structural modelling
• Structural equation modelling
• Full information maximum likelihood estimation
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Structural equation models: 
Low-Tech approach

• Uses OLS to do simple versions of the structural 
equations models

• The key assumption is the causal ordering of 
variables. In survey data this ordering is supplied by 
theory

• The causal diagram visualize the order of causation:
– Causality flows from left to right 
– Intervening variables give rise to indirect effects
– “reverse causation” creates problems
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Low-Tech causal modelling
Figure 1

Spring 2010 ©  Erling Berge 2010 562

Multiple regression as a causal model
Figure 2
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Quantities in the diagram
r12, r13, r23 Pearson correlations among x-variables

bY1.23, etc. Usually a standardized regression 
coefficient (“beta weight”) taken from the 
regression of Y on X1, and “.” means 
controlled for X2, X3

RY.123
2 Coefficient of determination R2 from the 

regression of Y on X1, X2, X3

√{1-RY.123
2} Is an estimate of unmeasured influences 

called error term or disturbance
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Multiple regression

• All assumptions and all problems apply as 
before
– Note in particular that error terms must be 

uncorrelated with included x-variables (all relevant 
variable are included) 

• If some of the X-es are intervening in figure 2 
the model is too simple, but it matters only if 
we are interested in causality 
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Path coefficients 
Figure 3
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New elements in figure 3

b31.2, b32.1 Standardized regression coefficients (“beta 
weight”) from the regression of X3 on X1

controlled for X2 and from the regression 
of X3 on X2 controlled for X1

R3.12
2 Coefficient of determination (R2) from the 

regression of X3 on X1 and X2

√{1-R3.12
2} The error term from the regression of X3

on X1 and X2
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The structural model of figure 3

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• In structural equations variables and 
coefficients are standardized

• That means that variables have an average of 0 
and a standard deviation of 1 and that 
coefficients vary between -1 and +1

^
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Figure 5: the regression of X3 on X1 and X2
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Direct, Indirect and Total Effects

• Indirect effects equal the product of 
coefficients along any series of causal paths 
that link one variable to another 

• Total effects equal the sum of all direct and 
indirect effects linking two variables

Spring 2010 ©  Erling Berge 2010 570

Indirect effects as products of path coefficients

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• Means that we have

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• = bY1.23X1 + bY2.13X2 + bY3.12(b31.2X1 + b32.1X2) 

• = bY1.23X1 + bY2.13X2 + bY3.12b31.2X1 + bY3.12b32.1X2

• = (bY1.23 + bY3.12b31.2)X1 + (bY2.13 + bY3.12b32.1)X2

• Compare compound coefficients to the diagram

^

^
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Structural model
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Path Coefficients
• X1 to Y: bY1.23 (regression coefficient of Y on X1, 

controlling for X2 and X3)
• X2 to Y: bY2.13 (regression coefficient of Y on X2, 

controlling for X1 and X3)
• X3 to Y: bY3.12 (regression coefficient of Y on X3, 

controlling for X1 and X2) 
• X1 to X3: b31.2 (regression coefficient of X3 on X1, 

controlling for X2)
• X2 to X3: b32.1 (regression coefficient of X3 on X2, 

controlling for X1)
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Direct effects

X1 to Y: bY1.23 regression coefficient of Y on X1, controlling 
for X2 and X3

X2 to Y: bY2.13 regression coefficient of Y on X2, controlling 
for X1 and X3

X3 to Y: bY3.12 regression coefficient of Y on X3, controlling 
for X1 and X2

X1 to X3: b31.2 regression coefficient of X3 on X1, 
controlling for X2

X2 to X3: b32.1 regression coefficient of X3 on X2, 
controlling for X1
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Indirect and total effects

Indirect effects

X1 to Y, through X3: b31.2 × bY3.12

X2 to Y, through X3: b32.1 × bY3.12

Total effects

X1 to Y: bY1.23 + (b31.2 × bY3.12)

X2 to Y: bY2.13 + (b32.1 × bY3.12)
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Additions to multiple regressions

• We learn something new if the indirect effects 
are large enough to have substantial interest

• More than two steps of causation tends to 
become very weak
– 0.3*0.3*0.3 = 0.027 

– 0.3 standard deviation change in causal variables 
leads to a 0.027 standard deviation change in the 
dependent variable
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Example of a model diagram with path coefficients

Y3= Livet på 
landet 
best

Y1= Eiga utd

Y2= Eiga innt

X1= Alder

X2= Kvinne




= 0,36

11= -0,34

12= 0,05

22= 0,32

21= 0,17

31= 0,09

Figur 2.1 Note differences in symbols
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Comment to the figure above
• The  coefficients go from one Y variable to 

another
• The  coefficients go from one X variable a Y 

variable
• The coefficient indexing indicates which 

variables they link. The first index tells the 
dependent variable. The second index tells the 
independent variable 

• The coefficients are standardized (OLS) 
regression coefficients (“beta weights”)
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The structural model of the example

• Ŷ3 = 31X1 + 32X2 + 31Y1 + 32Y2

• Ŷ2 = 21X1 + 22X2 + 21Y1

• Ŷ1 = 11X1 + 12X2

• Ŷ3 = X1  Y1  Y2

• Ŷ2 = X1 + X2 + Y1

• Ŷ1 = X1 + X2
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Direct and indirect effects on “Livet på 
landet best” from age

• Direct effect: 31 = 0.09
• Indirect effect by way of “Eiga utd” and “Eiga innt”

• 31 * 11 + 32 * 21 * 11 + 32 * 21

• (*(*(*((*(
� *** *
• 0.0748 + 0.00612 – 0.0085 = 0.07242
• Total effect = 0.09 + 0.07242 = 0.16242
• Increasing age by 1 st. dev. leads to an increase of 

0.16 st.dev. in the strength of support for “Livet på 
landet best”
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Variables and measurement

• All interval scale variables used in multiple regression 
(including non-linear transformed variables and interaction 
terms) can be included in structural equations models

• But interpretation becomes tricky when variables are 
complex. Conditional effect plots are very useful

• Robust, quantile, logit, and probit regression should not be 
used

• Categorical variables should not be used as intervening 
variables

• Scales or index variables can be used as usual in OLS 
regression
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Concluding on structural equations modelling

• Including factors from factor analysis as explanatory variables 
make it possible to approximate a LISREL type analysis

• If assumptions are true LISREL will perform a much better 
and provides more comprehensive estimation, but too often 
assumptions are not true. Then the low-tech approach has 
access to the large toolkit of OLS regression for diagnostics 
and exploratory methods testing basic assumptions and 
discovering unusual data points

• Simple diagnostic work sometimes yields the most 
unexpected, interesting and replicable findings from our 
research
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Principal components and factor analysis

Hamilton Ch 8 p249-282
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Principal components and factor analysis

• Principal components and factor analysis are 
both methods for data reduction

• They seek underlying dimensions that are able 
to account for the pattern of variation among a 
set of observed variables

• Principal components analysis is a 
transformation of the observed data where the 
idea is to explain as much as possible of the 
observed variation with a minimum number of 
components
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Factor analysis

• Estimates coefficients on - and variable values of -
unobserved variables (Factors) to explain the co-
variation among an observed set of variables

• The assumption is that a small set of the unobserved 
factors are able to explain most of the co-variation

• Hence factor analysis can be used for data 
reduction. Many variables can be replaced by a few 
factors
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Factor analysis

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ + uk

– k = 1, 2, 3, … , K 

• Symbols 
– K observed variables, Zk ; k=1, 2, 3, … , K
– J unobserved factors, Fj ; j=1, 2, 3, … , J where J<K

– For each variable there is a unique error term, uk, also 
called unique factors while the F factors are called 
common factors

– For each factor there is a standardized regression 
coefficient, lkj, also called factor loading; k refers to variable 
no, j refers to factor no. An index denoting case no has 
been omitted here. 
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Correlation of factors

• Factors my be correlated or uncorrelated
– Uncorrelated: they are then called orthogonal

– Correlated: they are then called oblique

• Factors may be rotated
– Oblique rotations create correlated factors

– Orthogonal rotations create uncorrelated factors
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Principal components

• Represents a simple transformation of variables. There are as 
many principal components as there are variables

• Principal components are uncorrelated 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• If the last few principal components explain little variation we 
can retain J<K components. Thus Principal Components also 
can be used to reduce data. 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

where J<K and
the residual vk has small variance and consist of the 
discarded principal components 
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Principal components vs factor analysis
• Principal components analysis attempts to explain 

the observed variation of the variables
• Factor analysis attempts to explain their 

intercorrelations
• Use principal components to generate a composite 

variable that reproduce the maximum variance  of 
observed variables

• Use factor analysis to model relationships between 
observed variables and unobserved latent variables 
and to obtain estimates of latent variable values 

• The choice between the two is often blurred, to some 
degree it is a matter of taste



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 295

Spring 2010 ©  Erling Berge 2010 589

The number of principal components
• K variables yield K principal components
• If the first few components account for most of the variation, 

we can concentrate on them and discard the remaining 
• The eigenvalues of the standardized correlation matrix 

provides a guide here 
• Components are ranked according to eigenvalues
• A principal component with an eigenvalue <1 accounts for 

less variance than a single variable
• Thus we discard components with eigenvalues below 1 
• Another criterion for keeping components is that each 

component should have substantive meaning
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Eigenvalues and explained variance

• In a covariance matrix the sum of eigenvalues 
equals the sum of variances. 

• In a correlation matrix this = K (the number of 
variables) since each standardized variable has a 
variance of 1 

• Thus the sum of eigenvalues of the principal 
components 

• 1 + 2 + 3 + … + K = K and 

• j / K = proportion of variance explained by 
component no j
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Uniqueness and communality

• If K-J components are discarded and we have only J 
factors 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

• And an error term vk

• The variance of the error term is called the 
uniqueness of the variable 

• Communality is the proportion of a variable’s 
variance shared with the components

• Communality = hk
2 = 1 - Uniqueness = j kj

2 , j=1,…, 
J ; k = variable number
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Rotation to simple structure

• The idea is to transform (rotate) the factors so that the 
loadings on each components make it easier to 
interpret the meaning of the component

• If the loading are close either to 1 or -1 on one factor 
and close to 0 on all others the structure is simpler to 
interpret: we rotate to “simple structure”. The rotated 
factors fit data equally well but are simpler to interpret

• Rotations may be
– Orthogonal  (rotation method typically: varimax)
– Oblique       (rotation method typically: oblimin, promax)
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Why rotate?

• Underlying unobserved dimensions may in 
theory be seen as correlated

• Allowing correlated factors may provide even 
simpler structure than uncorrelated factors, 
thus easier to interpret

• All rotations fit data equally well
• Hence the one chosen depends on a series of 

choices done by the analyst
• Try different methods to see if results differ
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SPSS output
• For rotated factor solutions with correlated factors 

SPSS provides two matrixes for interpretation
• The pattern matrix provides the direct regression of 

the variables on the factors. The coefficients tells 
about the direct contribution of a factor in explaining 
the variance of a variable. Due to the correlations of 
the factors there are also indirect contributions 

• The structure matrix provides the correlations 
between the variables and the factors
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Factor scores
• Both principal components and factor analysis may 

be used to compute composite scores called factor 
scores 

• Recall that variables and factors are assumed to be 
related like
– Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• Then it is possible to find values cij making 
– Fj = c1jZ1 + c2jZ2 + … + ckjZj + … + cKjZK

• The coefficients cij are the factor score coefficients. 
They come from the regression of the factor Fj on the 
variables 

ˆ
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Methods for extracting factors

• Principal factor analysis
– The original correlation matrix R is replaced by R* where 

the original 1-values of the diagonal has been replaced by 
estimates of the communality (the shared variance)

– The factors extracted tries to explain the co-variance or 
correlations among the variables. 

– The unexplained variance is attributed to a unique factor 
(error term). The uniqueness may reflect measurement 
error or something that this variable measure that no other 
variable measure

– The most common estimate of communality is Rk
2 the 

coefficient of determination from the regression of Zk on all 
other variables
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How many factor should we retain?

• In principal component analysis factors with 
eigenvalues above 1 is recommended

• In principal factor analysis factors with eigenvalues 
above 0 is recommended

• Procedure:
– Extract initial factors or components

– Rotate to simple structure

– Decide on how many factors to retain

– Obtain and use scores for the retained factors, ignoring 
discarded factors
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Concluding (1)

• Principal components
– transformation of the data, not model based. 

Appropriate if goal is to compactly express most of 
the variance of k variables. Minor components 
(perhaps all except the first) may be discarded 
and viewed as a residual. 

• Factor analysis
– Estimates parameters of a measurement model 

with latent (unobserved) variables. 



Ref.: http://www.erlingberge.no/ Spring 2010

©  Erling Berge 2010 300

Spring 2010 ©  Erling Berge 2010 599

Concluding (2)
• Types of factor analysis

– Principal factoring – principal components of a 
modified correlation matrix R* in which 
communality estimates (Rk

2) replace “1” on the 
main diagonal

• Principal factoring without iteration
• Principal factoring with iteration

– Maximum likelihood estimation – significance tests 
regarding number of factors and other 
hypotheses, assuming multivariate normality
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Concluding (3)

• Rotation 
– If we retain more than one factor rotation simplifies 

structure and improves interpretability
• Orthogonal rotation (varimax) maximum polarization given 

uncorrelated factors 
• Oblique rotation (oblimin, promax) further polarization by permitting 

interfactor correlations. The results may be more interpretable and 
more realistic than uncorrelated factors

• Scores 
– Factor scores can be calculated for use in graphs and 

further analysis, based on rotated or unrotated factors and 
principal components 
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Concluding (4)

• Factor analysis is based on correlations and 
hence as affected by non-linearities and 
influential cases as in regression
– Use scatter plots to check for outliers and non-

linearities 

– In maximum likelihood estimation this becomes 
even more important since it assumes multivariate 
normality making it even less robust than principal 
factors 
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Principal components of trust in 
Malawi

• Survey of 283 households in 18 villages in 
Malawi, 2007

• There are 8 related questions asked in one 
group

• Are there 1, 2 or more underlying dimensions 
shaping the attitudes expressed?

• Analysis of correlations (not co-variances)
• The questions: 
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M3 Would you say you trust all, most, some or just a few 
people in the following groups? (All=1 – None=5)

a Your family members All Most Some Only a 
few

None Do not 
know

b Your relatives All Most Some Only a 
few

None Do not 
know

c Your village All Most Some Only a 
few

None Do not 
know

d People from outside the village All Most Some Only a 
few

None Do not 
know

e People of same ethnic group All Most Some Only a 
few

None Do not 
know

f People from outside ethnic group All Most Some Only a 
few

None Do not 
know

g People from same church/mosque All Most Some Only a 
few

None Do not 
know

h People not from same church/mosque All Most Some Only a 
few

None Do not 
know
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Trust in Malawi: descriptive
Descriptive Statistics

1.60 .935 266

2.12 1.136 266

2.69 1.090 266

3.28 1.118 266

2.90 1.082 266

3.26 1.098 266

2.39 1.062 266

3.02 1.197 266

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

Mean Std. Deviation Analysis N
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Trust in Malawi: correlation of variables

Correlation Matrix

1.000 .500 .416 .236 .370 .316 .422 .305

.500 1.000 .496 .315 .363 .353 .424 .292

.416 .496 1.000 .482 .588 .573 .465 .430

.236 .315 .482 1.000 .526 .610 .233 .469

.370 .363 .588 .526 1.000 .702 .504 .643

.316 .353 .573 .610 .702 1.000 .430 .618

.422 .424 .465 .233 .504 .430 1.000 .536

.305 .292 .430 .469 .643 .618 .536 1.000

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

M3.a. Trust
in family
members

M3.b. Trust
in relatives

M3.c. Trust
in people in
own village

M3.d. Trust
in people
outside the
village

M3.e. Trust
in people of
same ethnic
group

M3.f. Trust in
people
outside
ethnic group

M3.g. Trust
in people
from same
church/mos
que

M3.h. Trust
in people not
from same
church/mosq
ue
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Trust in Malawi: number of factors
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Trust in Malawi: factor/ component matrix
Component Matrix a

.588 .586

.624 .532

.776 .080

.675 -.398

.832 -.221

.816 -.330

.690 .265

.757 -.262

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

1 2

Component

Extraction Method: Principal Component Analysis.

2 components extracted.a. 
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Trust in Malawi: loadings on orthogonal 
factors

Rotated component matrix Unrotated 
components 

Orthogonal 
varimax 

Variables F1 F2 F1 F2

M3.a. Trust in family members .588 .586 .117 .821

M3.b. Trust in relatives .624 .532 .178 .800

M3.c. Trust in people in own village .776 .080 .572 .531

M3.d. Trust in people outside the village .675 -.398 .779 .089

M3.e. Trust in people of same ethnic group .832 -.221 .798 .324

M3.f. Trust in people outside ethnic group .816 -.330 .850 .228

M3.g. Trust in people from same church/mosque .690 .265 .391 .627

M3.h. Trust in people not from same church/mosque
.757 -.262 .762 .246
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Trust in Malawi: communalities
Communalities

.689

.671

.609

.614

.741

.774

.546

.641

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

Extraction

Extraction Method: Principal Component Analysis.
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Trust in Malawi: explained variance

Total Variance Explained

4.199 52.487 52.487 3.071 38.387 38.387

1.087 13.582 66.069 2.215 27.681 66.069

Compone
1

2

Total % of VarianceCumulative % Total % of VarianceCumulative %

xtraction Sums of Squared LoadingRotation Sums of Squared Loading

Extraction Method: Principal Component Analysis.
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Trust in Malawi: oblique factors pattern matrix

Rotated component matrix varimax 
(orthogonal)

oblimin promax

Variables F1 F2 F1 F2 F1 F2

M3.a. Trust in family members .117 .821 -.087 .868 -.145 .901

M3.b. Trust in relatives .178 .800 -.014 .826 -.067 .855

M3.c. Trust in people in own village .572 .531 .493 .414 .476 .409

M3.d. Trust in people outside the village
.779 .089 .838 -.133 .864 -.170

M3.e. Trust in people of same ethnic 
group

.798 .324 .797 .120 .806 .093

M3.f. Trust in people outside ethnic 
group

.850 .228 .881 -.001 .899 -.036

M3.g. Trust in people from same 
church/mosque

.391 .627 .268 .573 .237 .582

M3.h. Trust in people not from same 
church/mosque

.762 .246 .779 .045 .792 .016
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Rotated component matrix varimax oblimin promax

Variables F1 F2 F1 F2 F1 F2

M3.a. Trust in family members .117 .821 .327 .826 .351 .821

M3.b. Trust in relatives .178 .800 .380 .819 .403 .817

M3.c. Trust in people in own village .572 .531 .690 .649 .702 .671

M3.d. Trust in people outside the village
.779 .089 .775 .267 .771 .306

M3.e. Trust in people of same ethnic group
.798 .324 .854 .500 .857 .537

M3.f. Trust in people outside ethnic group
.850 .228 .880 .419 .880 .460

M3.g. Trust in people from same 
church/mosque .391 .627 .541 .700 .557 .712

M3.h. Trust in people not from same 
church/mosque .762 .246 .800 .416 .801 .452

Trust in Malawi: oblique factors structure matrix
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Trust in Malawi: correlation of components

Component Correlation Matrix

1.000 .477

.477 1.000

Component
1

2

1 2

Extraction Method: Principal Component Analysis.  
Rotation Method: Oblimin with Kaiser Normalization.
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Trust in Malawi: variables in component plot
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Trust in Malawi: Orthogonal Factor 1 by district
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Trust in Malawi: Orthogonal Factor 2 by district
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Trust in Malawi: Orthogonal factors by district
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Missing data
Biased samples

• Allison, Paul D 2002 “Missing Data”, Sage 
University Paper: QASS 136, London, Sage, 
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There is a missing case in the sample
• If one person

– Refuses to answer
– Are not at home
– Has moved away
– Etc. 

• The problem of missing data belong to the study of 
biased samples. In general biased samples is a 
more severe problem than the fact that we are 
missing answers for a few variables on some cases 
(see Breen 1996 ”Regression Models: Censored, 
Sample Selected, or Truncated Data”, QASS Paper 
111, London, Sage)

• But the problems are related

Fotnote: 

• Sjå Breen 1996 ”Regression Models: Censored, 
Sample Selected, or Truncated Data”, QASS Paper 
111, London, Sage,
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There are missing answers for a few variables if

• Persons refuse to answer certain questions
• Persons forget, or do not notice some question, or the 

interviewer does it
• Persons do not know any answer to the question: “Do 

not know” are often a valid answer category. But the 
result is a missing answer

• The question is irrelevant (for the person)
• In administrative registers some documents may have 

been lost
• In research designs where variables with 

measurement problems may have been measured 
only for a minority of the sample
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Missing data entail problems

• There are practical problems due to the fact 
that all statistical procedures assume 
complete data matrices 

• It is an analytical problem since missing data 
as a rule produce biased parameter estimates

• It is important to distinguish between data 
missing for random causes and those missing 
from systematic causes
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The simple solution: remove all cases with 
missing data 

• Listwise/ casewise removal of missing data means to remove all 
cases missing data on one or more variables included in the 
model 

• The method has good properties, but may in some cases 
remove most of the cases in the sample

• Alternatives like pairwise removal or replacement with average 
variable value has proved not to have good properties

• More recently developed methods like ”maximum likelihood” and 
”multiple imputation” have better properties but are more 
demanding

• In general it pays to do good work in the data collection stage 
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Types of randomly missing
• MCAR: missing completely at random

– Means that missing data for one person on the variable y is 
uncorrelated with the value on y and with the value on any 
other variable in the data set (however, internal case by 
case the value of missing may of course correlate with the 
value missing on other variables)

• MAR: missing at random
– Means that missing data for person i on the variable y do 

not correlate with the value on y if one control for the 
variation of other variables in the model

– More formally: 
Pr(Yi = missing l Yi,Xi) = Pr(Yi =missing l Xi) 
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Process resulting in missing

• Is ignorable if
– The result is MAR and the parameters governing the 

process are unrelated to the parameters that are to be 
estimated

• Is non-ignorable if
– The result is not MAR. Estimation of the model will then 

require a separate model of the missing process

– See Breen 1996 ”Regression Models: Censored, Sample 
Selected, or Truncated Data”, QASS Paper 111, London, 
Sage

• Here the situation with MAR will be discussed
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Conventional methods

Common methods in cases with MAR data:

• Listwise deletion

• Pairwise deletion

• Dummy variable correction

• Imputation (guessing a value for the missing)

Of the conventional methods listwise deletion 
is the best 
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Listwise deletion (1)

• Can always be used

• If data are MCAR we have a simple random 
subsample of the original sample

• Smaller n entails larger variance estimates

• In the case of MAR data and the missing 
values on an x-variable are independent of the 
value on y, listwise deletion will produce 
unbiased estimates
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Listwise deletion (2)

• In logistic regression listwise deletion may 
cause problems only if missing is related both 
to dependent and independent variables

• If missing depends only on the values of the 
independent variable listwise deletion is better 
than replacement of missing values by 
maximum likelihood and multiple imputation
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Pairwise deletion 
• Means that all computations are based on all 

available information seen pairwise for all pairs of 
variables included in the anlysis

• One consequence is that different parameters will be 
estimated on different samples (we see variation in n 
from statistic to statistic)

• Then all variance estimates are biased

• Common test statistics provides biased estimates 
(e.g. t-values and F-values)

• DO NOT USE PAIRWISE DELETION !!
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Dummy variable correction
If data is missing for the independent variable x

• Let x*i = xi if xi is not missing and 
x*i = c (an arbitrary constant) if xi is missing

• Define Di=1 if xi is missing, 0 otherwise
• Use x*i and Di in the regression instead of xi

• In nominal scale variables missing can get its own 
dummy

Investigations reveal that even if we have MCAR data 
parameter estimates will be biased

Do not use dummy variable correction!
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Imputation
• The goal is to replace missing values with 

reasonable guesses about what the value might 
have been before one does an analysis as if this 
were real values; e.g. 
– Average of valid values
– Regression estimates based on many variables and cases 

with valid observations

• Parameter estimates are consistent, but estimates of 
variances are biased (consistently too small), and 
the test statistics are too big

• Avoid if possible the simple forms of imputation
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Concluding on conventional methods for 
missing data

• Conventional methods of correcting for missing data 
make problems of inference worse

• Be careful in the data collection so that the missing 
data are as few as possible

• Make an effort to collect data that may help in 
modelling the process resulting in missing

• If data are missing use listwise deletion if not 
maximum likelihood or multiple imputation is 
available 
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New methods for ignorable missing data 
(MAR data): Maximum Likelihood (ML)

• Conclusions
– Based on the probability for observing just those 

values found in the sample

– ML provides optimal parameter estimates in large 
samples in the case of MAR data

– But ML require a model for the joint distribution of 
all variables in the sample that are missing data, 
and it is difficult to use for many types of models 
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ML-method: example (1)

• Observing y and x for 200 cases
• 150 distributed as shown
• For 19 cases with Y=1 x is 

missing and for 31 cases with 
Y=2 x is missing 

• We want to find the probabilities 
pij in the population

Y=1 Y=2

X=1 52 21

X=2 34 43

Y=1 Y=2

X=1 p11 p12

X=2 p21 p22
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ML-method: example (2)
• In a table with I rows and J columns, complete 

information on all cases and with nij cases in cell ij the 
Likelihood is

 
,

i jn

i j
i j

p L

That is the product of all probabilities for every table 
cell taken to the power of the cell frequency
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ML-method: example (3)

       11 12 21 22

11 12 21 22

n n n n
p p p pL

       52 21 34 43

11 12 21 22p p p pL

For a fourfold table the Likelihood will be

For the 150 cases in the table above where we 
have all observations the Likelihood will be
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ML-method: example (4)
• For tables the ML estimator is pij = nij/n 
• This provides good estimates for the table where 

we do not have missing data (listwise deletion)
• How can one use the information about y for the 

50 cases where x is missing?
• Since MAR is assumed to be the case, the 50 

extra cases with known y should follow the 
marginal distribution of y

• Pr(Y=1) = (p11 + p21) and Pr(Y=2) = (p12 + p22) 
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ML-method: example (5)

• Taking into account all that is known about the 200 
cases the Likelihood becomes 

           52 21 34 43 19 31

11 12 21 22 11 21 11 21p p p p p p p p  L

• The ML-estimators will now be

� �   �  ijp p x i p y j  | y = j
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ML-method: example (6)
• Taking into account the information we have about 

cases with missing data, parameter estimates 
change

Estimate of Missing deleted Missing included

p11 0.346 0.317

p21 0.227 0.208

P12 0.140 0.156

p22 0.287 0.319
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The ML-method in practice
• For the general case with missing data there are two 

approaches
– The expectation-maximization (EM) method, a two stage 

method where one starts out with the expected value of the 
missing data and use these to obtain parameter estimates 
that again will be used to provide better estimates of the 
missing values and so on …

(this method provides biased estimates of standard errors)

– Direct ML estimates are better but can be provided only for 
linear and log-linear models 
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New methods for ignorable missing data (MAR 
data): Multiple Imputation (MI)

• Conclusions
– MI is based on a random component added to 

estimates of the missing data values

– Has as good properties as the ML method and is 
easier to implement for all kinds of models 

– But it gives different results every time it is used 
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Multiple Imputation (1)

• MI have the same optimal properties as the ML 
method. It can be used on all kinds of data and with 
all kind of models. In principle it can be done with the 
ordinary analytical tools

• The use of MI can be rather convoluted. This makes 
it rather easy to commit errors. And even if it is done 
correctly one will never have the same result twice 
due to the random component in the imputed 
variable value
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Multiple Imputation (2)

• Use of data from a simple imputation (with or without 
a random component) will underestimate the 
variance of parameters. Conventional techniques are 
unable to adjust for the fact that data have been 
generated by imputation

• The best way of doing imputation with a random 
component is to repeat the process many times and 
use the observed variation of parameter estimates to 
adjust the estimates of the parameter variances

• Allison, p.30-32, explains how this can be done
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Multiple Imputation (3)
• MI requires a model that can be used to predict values of 

missing data. Usually there is an assumption of normally 
distributed variables and linear relationships. But models 
can be tailored to each problem

• MI can not handle interactions
• MI model should contain all variables of the analysis 

model
• (including the dependent variable)
• MI works only for interval scale variables. If nominal 

scale variables are used special programs are needed
• Testing of several coefficients in one test is complicated 
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When data are missing systematically

• Will usually require a model of how the 
missing cases came about

• ML and MI approaches can still be used, but 
with much stronger restrictions and the results 
are very sensitive for deviations from the 
assumptions
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Summary

• If listwise deletion leaves enough data this is 
the simplest solution

• If listwise deletion do not work one should test 
out multiple imputation

• If there is a suspicion that data are not MAR 
one needs to create a model of the process 
creating missing. This can then be used 
together with ML or MI. Good results require 
that the model for missing is correct
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Types of biased samples 

• Censored 
• Truncated 
• Selected 
• Such samples arise because society works 

“selectively”, and because we do not get 
complete answers to questions asked

• Which variables and how they are truncated 
determine the type of bias
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Causal analysis in biased samples

• Regression analysis
– Will (as a rule) have severe problems if the 

sample is biased

• Hence 
– The process of selection needs to be 

included in the model or analysis
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Estimated relationsh. 

Real relationship 

Income 

Education 

L M H

Conditional mean of Y in the population 

Conditional mean of Y in the sample 

Kjelde: Winship, Christopher, and Robert D. Mare 1992 «Models for sample selection 
bias», Annual Review of Sociology, 18:327-350

An example of how a biased sample may affect regression
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Comments to the figure

• Only persons with incomes below 15000 USD are 
included in the sample

• Result is erroneous estimate of the (real) impact of 
education

• Errors in reporting income creates a selected sample
• Large errors in the original sample leads to exclusion
• Large values on the independent variable leads to large 

(negative) errors
• The errors in the sample will be correlated with x
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Truncation of variables

• A variable, X, is called truncated if we for X<c 
or for X>c do not know more than that X<c or 
X>c

• This is known as left or right side truncation 
respectively

• We may have multiple truncation such as 
simultaneous left side and right side truncation
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Biased samples and missing data I

• Censored samples (explicit selection on Y)
– Y is unknown for cases where Y has value above 

or below c

– X is known for all cases in the sample

• Selected samples (unsystematic selection)
– Y is unknown for cases where f. e. z=1 and known 

if z=0

– X is know for all cases in the sample
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Selected or censored sample? 

• The terminology is not very clear
• In general the distinction is a question of 

interpretation and theoretical meaning
– If the missing observations on Y are caused by the 

measurement method or data collection method 
the sample is called censored

– If the missing observations of Y are caused by the 
behaviour of the individuals the sample is called 
selected
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Biased samples and missing data II

• Truncated samples (explicit selection on Y)
– Y is unknown for cases where Y has value above 

or below c

– X is known when Y is known 

• Selection on the independent variable
– Y is known for cases where X has a value above or 

below c

– X is known when Y is known
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Consequences of biased samples

• Selection on the independent variable do 
not cause problems

• Truncated, selected, and censored samples 
cause the residual to be correlated with the 
independent variables. Both external and 
internal validity is compromised
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Causes of biased samples

• Data collection procedures and missing 
answers may lead to truncated, selected or 
censored samples
– For example: ”missing” on a dependent variable 

give a selected sample based on the variable Z, 
answer or no answer 

• In every non-random sample there is a 
potential for erroneous conclusions due to 
biased sample
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How to handle biased samples

• The analysis should at the outset 
acknowledge the problem and use models that 
are able to correct for bias in the sample 
unless there are good reasons to believe the 
problem is small

• The solution then is to
– 1) construct a model that predicts selection
– 2) use this model to construct a model that 

predicts y conditional on the person having been 
selected

Spring 2010 ©  Erling Berge 2010 658

A basic model for censored samples

E[Y| X] = Pr[Y>c | X]*E[Y | Y>c & X] +

Pr[Y<=c | X]*E[Y | Y<=c & X]

Left side truncation of Y at c gives 

E[Y | Y<=c & X] = c

It is always possible to transform Y so that c=0, 
hence the real regression, E[Y| X], can be 
written

• E[Y| X] = Pr[Y>0 | X]*E[Y | Y>0 & X]
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The model in a truncated sample

• Yi = E[Yi | Yi<a & Xi] + ei

It can be shown that this is equivalent to

• Yi = E[Yi | Xi] - ’i(m) +ei

where ’i(m) is an estimate of the Hazard rate at the 
point 

• m= (a - E[Yi | Xi] )/
The parameters of E[Yi | Xi] are overestimated

The model can be estimated by the ML method
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Two step estimation in censored samples

• The selection model, Pr[Y>c | X], can be 
modelled by probit regression on the 
censored sample

• The model of the outcome ,             E[Y | 
Y>c & X], can then be estimated on the 
censored sample

• The results are trustworthy only in large 
samples 
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Problems in the two step model

• Results are sensitive for assumptions about the 
distribution of the residual
– Homoscedasticity: deviation for this assumption is more 

serious than in OLS since estimates in a censored model 
are neither consistent, nor efficient

– Normal distribution
Both assumptions have to be properly tested

• There are also problems of identification of 
parameters due to multicollinearity between the 
hazard rate and the explanatory variables (see 
Breen 1996:16 (equation 2.7)
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Two step estimation in OLS
is sensitive for

• Correlations between errors in the selection 
equation (u) and errors in the outcome equation (e) 

• Correlations between variables in the selection and 
outcome equations

• Degree of censoring in the sample (how large a 
fraction of the cases have missing y values?)

Conclusion: use ML-estimation 
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