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Required reading

» Hamilton, Lawrence C. 1992. Regression with
graphics. Belmont: Duxbury. Ch 1-8

* Hamilton, Lawrence C. 2008. A Low-Tech
Guide to Causal Modelling.

* Allison, Paul D. 2002. Missing Data. Sage
University Paper: QASS 136. London: Sage.
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Background to the sciences

* In the history of civilization there are 2 unrivalled
accelerators:

— The invention of writing about 5-6000 years ago

— The invention of the scientific method for separating facts
from fantasy about 5-600 years ago

 There is no topic more important to learn than the
basics of the scientific method

* That does not mean that it is not — at times — rather
boring ....
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Basics of causal beliefs

* First: doubt what you believe is a causal link until you
can give good valid reasons justifying your belief

» Second: there are usually many types of good valid
reasons for believing in a particular causal link, for
example, scientific consensus

— If the overwhelming majority of certified scientists says that
human activities contribute to global warming, then we are
justified believing that by changing our activities we could
contribute less to global warming

 Third: random conjunctures (“correlation”) are not good
valid reasons for believing in a causal link

Spring 2010 © Erling Berge 2010 5

Causal mechanism

« Elster 2007 Explaining Social Behaviour:

* ”mechanisms are frequently occurring and
easily recognizable causal patterns that are
triggered under generally unknown
conditions or with indeterminate
consequences’ (page 36)

* Also sometimes limited to “causal chains”

Spring 2010 © Erling Berge 2010 6
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Spring 2010

Causal correlations

This class will focus on how to distinguish
between random conjunctures and that
which might be a valid causal correlation

That which might be a valid causal
correlation will need a causal mechanism
explaining how the cause can produce the
effect before we have a valid reason to
believe in the causal link

© Erling Berge 2010

Spring 2010

Primacy of theory

To say it more bluntly: If you do not have a
believable theory (and this may well start as a
fantasy) then regression techniques will tell you
nothing even if you find a seemingly non-random
correlation

But without a valid and believable empirical
analysis any believable fantasy will remain just
that: a fantasy (assuming you cannot find other
valid verifications)

© Erling Berge 2010
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Types of causal mechanisms I

e Structural causation

— A Social structure has causal impacts that are not well understood.
In a framework of methodological individualism one may say that
it limits and orders the options that actors can choose from. Hence,
variables such as age, sex, and place of living can be used as
proxies for poorly understood causal factors.

— Budget constraints (time and income constraints) have the same
character. They limit and orders the options that actors can choose
from. However, they enter the model more through the way the
dependent variable is constructed, and the kind of link function
(linear or logistic) used to mediate between observations and
dependent variable.

Spring 2010 © Erling Berge 2010 9

Types of causal mechanisms II

e Individual causation

— Preferences (norms, values, attitudes) may be difficult to observe
in detail but are assumed to be present

— Resources (income/ capital, education/ human capital, access to
networks/ social capital) are usually measured extensively even
if unevenly. Resources represent budget constraints

— Perception of opportunities will often depend on position in
social structure

— Beliefs about resources and opportunities are important. They
may be based on both fact and fiction

Spring 2010 © Erling Berge 2010 10
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Preliminaries

* Prerequisite: SOS1002 or equivalent

* Goal: to read critically research articles
using quantitative methods in your field of
interest

* Required reading ... see above

* Term paper: this is part of the examination
and evaluation procedure

Spring 2010 © Erling Berge 2010
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Goals for the class

» The goal is that each of you shall be able to read
critically research articles discussing quantitative
data. This means

— You are to know the pitfalls so you can evaluate the
validity of an article

* You are to learn how to perform straightforward
analyses of co-variation in “quantitative” and
’qualitative” data (nominal scale data in
regression analysis), and in particular:

— Also here you have to demonstrate that you know the
pitfalls
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Fotnote:

 Skiljet mellom kvalitative data og
kvantitative data er ikkje fullt sa enkelt som
det hgyrest ut til.

* Dei generelle prinsippa for kvalitetskontroll
gjeld uansett type data.

* Og ein god del av det som tidlegare berre
kunne studerast med kvalitative” data kan
ein 1 dag analysere systematisk ved hjelp av
logistisk regresjonsteknikk.

Spring 2010 © Erling Berge 2010

Lecture I
Basics of what you are assumed to know

» The following is basically repeating known stuff
 Variable distributions

— Ringdal Ch 12 p251-270

— Hamilton Ch 1 p1-23
 Bivariat regression

— Ringdal Ch 17-18 p361-387

— Hamilton Ch 2 p29-59

Spring 2010 © Erling Berge 2010
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Some basic concepts

— Cause

— Model

— Population

— Sample

— Variable: level of measurement

— Variable: measure of centralization

— Variable: measure of dispersion

Spring 2010 © Erling Berge 2010 15

Data analysis

 Descriptive use of data
— Developing classifications
 Analytical use of data

— Describe phenomena that cannot be observed
directly (inference)

— Causal links between directly eller indirectly
observable phenomena (theory or model
development)

Spring 2010 © Erling Berge 2010 16
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Causal analysis:
from co-variation to causal connection

* From colloquial speach to theory

— Fantasy and intuition, established science tradition
* From theory to model

— Operationalisation

» From observation to generalisation

— Causal analysis

Spring 2010 © Erling Berge 2010

THREE BASIC DIVISIONS
Observed Real interest
THEORY/ MODEL - REALITY
SAMPLE - POPULATION
CO-VARIATION - CAUSE

On the one hand we have what we are able to
observe and record, on the other hand, we have
what we would like to discuss and know more
about
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Basic sources of error

Errors in theory / model

— Model specification: valid conclusions require a correct
(true) model

Errors in the sample
— Selection bias
* Measurement problems
— Missing cases and measurement errors
— Validity og reliability

Multiple comparisons
— Conclusions are valid only for the sample

Spring 2010 © Erling Berge 2010 19

From population to sample

* POPULATION (all units)
Simple random sampling

* SAMPLE (selected units)

Spring 2010 © Erling Berge 2010 20
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Unit and variable

» Aunit, as a carrier of data, will be contextually

defined

— SUPER - UNIT: e.g. the local community
— UNIT: e.g. household

— SUB - UNIT: e.g. person

 Variable: empirical concept used to
characterize units under investigation. Each
unit is characterized by being given a
variable value

Spring 2010 © Erling Berge 2010 21

Data matrix and level of measurement

» Matrix defined by Units * Variables

— A table presenting the characteristics of all investigated
units ordered so that all variable values are listed in the
same sequence for all units

* Level of measurement for a variable

— Nominal scale *classification

— Ordinal scale *classification and rank

— Interval scale *classification, rank and distance

— Ratio scale *classification, rank, distance and absolute zero
Spring 2010 © Erling Berge 2010 22
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Variable analysis

* Description

— Central tendency and dispersion

— Form of distribution

— Frequency distributions and histograms
» Comparing distributions

— Quantile plots

— Box plots

Spring 2010 © Erling Berge 2010 23

VARIABLE: central tendency

* Mean Lo
sum of all values of the variable for all X =— X
units divided by the number of units N3
« MEDIAN . N
. . Z(Xi - X)
The variable value in an ordered i
distribution that has half the units on each 3 0
side Z(Xi _X)2 <Z(Xi _C)2
+ MODUS
The typical value. The value in a if
distribution that has the highest frequency ¢ - X
Spring 2010 © Erling Berge 2010 24
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Fotnote:

* (Gjennomsnittet har

* Nullsum eigenskapen ¥, (Y, - ¥)=0

» LSQ eigenskapen 3, (Y - Y)2 <Y (Y;-c)?
forallec#Y

Spring 2010 © Erling Berge 2010 25

VARIABLE: measures of dispersion I
« MODAL PERCENTAGE

* The percentage of units with value like the mode
« RANGE OF VARIATION

» The difference between highest and lowest value
in an ordered distribution

* QUARTILE DIFFERENCE

* Range of variation of the 50% of units closest to
the median (Q5-Q,)

» MAD - Median Absolute Deviation

* Median of the absolute value of the difference
between median and observed value:

— MAD(x,) = median [x; - median(x;)|

Spring 2010 © Erling Berge 2010 26
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VARIABLE: measures of dispersion II
STANDARD DEVIATION

Square root of mean squared deviation from the mean
=5, =V [E(Y; - V) - D]

MEAN DEVIATION

Mean of the absolute value of the deviation from the mean

VARIANCE

Standard deviation squared:
=52 =E(Y;- Y- 1)

(nb: here Y is the mean of Y)

Spring 2010 © Erling Berge 2010 27

Variable: form of distribution I

» Symmetrical distributions
» Skewed distributions

— "Heavy” and “’Light” tails
» Normal distributions

— Are not ’normal”

— Are unambiguously determined by mean and
variance (1 og 2 )

Spring 2010 © Erling Berge 2010 28
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Fotnote:

» Nokre statistiske prosedyrar krev
normalfordeling, mange fungerer betre

dersom vi har normalfordelte variablar.

Spring 2010 © Erling Berge 2010
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Skewed distributions

« Positively skewed has Y >Md
» Negatively skewed has Y <Md
« Symmetric distributions has Y =~ Md

nb: here Y = mean of Y

Spring 2010 © Erling Berge 2010
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Median and IQR are resistant against the impact of

Symmetric distributions

extreme values
Mean and standard deviation are not
In the normal distribution (ND) s, = IQR/1.35

If we in a symmetric distribution find

— s, > IQR/1.35 then the tails are heavier than in the ND
— s, <IQR/I.35 then the tails are lighter than in the ND
— s, ~ IQR/1.35 then the tails are about similar to the ND

Spring 2010
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Frequency
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Variable: analyzing distributions I

* Box plot

— The box is constructed based on the quartile
values Q, og Q; . Observations within < Q,, Q;>
are in the box-

— Adjacent large values are defined as those outside
the box but inside Q; + 1.5*IQR or Q, - 1.5*IQR

— Outliers (seriously extreme values) are those
outside of Q; + 1.5*IQR or Q, - 1.5*IQR

Spring 2010 © Erling Berge 2010
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Variables: analyzing distributions II

* Quantiles is a generalisation of quartiles and
percentiles
» Quantile values are variable values that
correspond to particular fractions of the
total sample or observed data, e.g.
— Median is 0.5 quantile (or 50% percentile)
— Lower quartile is 0.25 quantile
— 10% percentile is 0.1 quantile ...

Spring 2010 © Erling Berge 2010
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Fotnote:

* Symmetri-diagram basert pd avstand opp og
nedover frd median 1 ei ordna fordeling vil
gi ei rett linje dersom vi har symmetri, e1
kurva linje dersom det ikkje er symmetri i
fordelinga.

Spring 2010 © Erling Berge 2010 37

Variables: analyzing distributions 11

* Quantile plots

— Quantile values against value of variable

* The Lorentz curve is a special case of this (it gives
us the Gini-index)

* Quantile-Normal plot

— Plot of quantile values on one variable against
quantile values of a Normal distribution with
the same mean and standard deviation

Spring 2010 © Erling Berge 2010 38
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Example: Randaberg 1985

* Questionnaire: (the number of decare land
you own/ 10 da=1 ha)

Q: ANTALL DEKAR GRUNN DU
eler:

(Number of decare you own: )

Spring 2010 © Erling Berge 2010 39

NUMBER OF DEKARE LAND OWNED
NUMBER OF DEKARE
LAND OWNED Valid N (listwise)
N 380 380
Minimum 0
Maximum 99900
Mean 21885.17
Std. Deviation 38279.311
Spring 2010 © Erling Berge 2010 40
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XAreaOwned
(NUMBER OF DEKARE LAND OWNED)

XAreaOwned Valid N (listwise)
N 307 307
Minimum 00
Maximum 25000.00
Mean 3334.4104
Std. Deviation 4201.54943
Spring 2010 © Erling Berge 2010 42

© Erling Berge 2010 21



Ref.: http://www.erlingberge.no/

XAreaOwned Valid N (listwise)
N Statistic 307 307
Range Statistic 25000.00
Minimum Statistic .00
Maximum Statistic 25000.00
Sum Statistic 1023664.00
Mean Statistic 3334.4104
Std. Error 239.79509
Std. Deviation Statistic 4201.54943
Variance Statistic 17653017.596
Skewness Statistic 1.352
Std. Error 139
Kurtosis Statistic 2.194
Std. Error 277
Spring 2010 © Erling Berge 2010 43
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Normal Q-Q Plot of XAreaOwned
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Questionnaire:

* Hyvor viktig er det at myndighetene kontrollerer og
regulerer bruken av arealer gjennom for eksempel
kontroll av

+ av tomtetildelinger (kommunal formidl.)

1 2 3 4 5 6 7 8
* avkjersler fra hus til vei

1 2 3 4 5 6 7 8
* kjop og salg av landbrukseiendommer

1 2 3 4 5 6 7 8

Spring 2010 © Erling Berge 2010 48
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Importance of public control of sales of agric. estates

Frequency Percent Valid Percent Cumulative Percent
Valid 1 50 13.2 13.2 13.2
2 40 10.5 10.5 23.7
3 34 8.9 8.9 32.6
4 59 15.5 15.5 48.2
5 45 11.8 11.8 60.0
6 50 13.2 13.2 73.2
7 85 224 224 95.5
8 12 3.2 3.2 98.7
9 5 1.3 1.3 100.0
Total 380 100.0 100.0
Spring 2010 © Erling Berge 2010 49
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Questionnaire: coding

Ved utfylling: sett ring rundt et tall som synes a gi passelig
uttrykk for viktigheten nar 1 betyr svaert lite viktig og 7
serdeles viktig, eller sett et kryss inne i parantesene () som
star bak svaret du velger
Pé noen spersmal kan du krysse av flere svar

lykkes darlig/ lykkes godt/ | vet ikke
lite viktig sveert viktig
Kodeverdi 1 2 |3 516 |7 8

Dei som ikkje kryssar av noko svar vert koda 9 (ie. missing)

Spring 2010

© Erling Berge 2010

51

I. OF P. CNTR. OF SALES OF AGRIC. EST.

Frequency Percent Valid Percent Cumulative Percent

Valid 1 50 13.2 13.8 13.8
2 40 10.5 11.0 24.8
3 34 8.9 9.4 342
4 59 15.5 16.3 50.4
5 45 11.8 12.4 62.8
6 50 13.2 13.8 76.6
7 85 22.4 234 100.0
Total 363 95.5 100.0

Missing 8 12 32
9 5 1.3
Total 17 4.5

Total 380 100.0

Spring 2010 © Erling Berge 2010
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I. OF P. CNTR. OF Y regressed on
SALES OF AGRIC. ControlSalesAgricEstate
EST. Valid N (listwise)
N Statistic 380 363
Range Statistic 8 6.00
Minimum Statistic 1 1.00
Maximum Statistic 9 7.00
Sum Statistic 1729 1588.00
Mean Statistic 4.55 4.3747
Std. Error 114 11045
Std. Deviation Statistic 2.213 2.10435
Variance Statistic 4.897 4.428
Skewness Statistic -171 -.234
Std. Error 125 128
Kurtosis Statistic -1.148 -1.267
Std. Error 250 255
Spring 2010 © Erling Berge 2010 54
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Distributions with or without
missing?

* What difference do the 17 missing
observations make in the

— Quantile-Normal plot?
— Box plot?

Spring 2010 © Erling Berge 2010 55

Normal Q-Q Plot of I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Normal Q-Q Plot of I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Data collection and data quality I

* Questions — techniques for asking questions will not be
discussed
* Sample

— From sampling to final data matrix: selection of cases,
refusing to participate, and missing answers on questions

» Variables: Data on cases collected as variable values for
each case

« Statistics: Data on samples collected as statistics
(Norwegian: “observatorer” where values are estimated
for each sample

+ Statistics is also the science of assessing the quality of
each statistic

Spring 2010 © Erling Berge 2010 59

Data collection and data quality II

* What 1s important for the quality of the
data?

— Validity of questions asked and reliability of the
procedures used.

— Selection bias: A possible causal link between
missing observations and the topic studied

« What can be done if data are faulty?
— Not much!

Spring 2010 © Erling Berge 2010 60

© Erling Berge 2010

Spring 2010

30



Ref.: http://www.erlingberge.no/

Writing up a model

* Defining the elements of the model
— Variables, error term, population, and sample
* Defining the relations among the elements of the model
— Sampling procedure, time sequence of the events and
observations, the functions that links the elements into an
equation
» Specification of the assumptions stipulated to be true in
order to use a particular method of estimation
— Relationship to substance theory (specification requirement)
— Distributional characteristics of the error term

Spring 2010 © Erling Berge 2010 61

Elements of a model
Population (who or what are we interested
n?)

Sample (simple random sample or exact
specification of how each case came into the
sample)

Variables (characteristics of cases relevant to
the questions we are investigating)

Error terms (the sum of impacts from all
other causes than those explicitly included)

Spring 2010 © Erling Berge 2010 62
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Relations among elements of a model

Sampling: biased sample?

Time sequence of events and observations
(important to aid causal theory)

— Conclusions about causal impacts require genuine
co-variation

Equations and functions

Spring 2010 © Erling Berge 2010

Co-variation (genuine vs spurious co-variation)

63

Bivariat Regression:
Modelling a population

* Y =B+ By x5 + g

* i=1,...,n n = # cases in the population

* Y and X must be defined unambiguously, and
Y must be interval scale (or ratio scale) in
ordinary regression (OLS regression)

Spring 2010 © Erling Berge 2010
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Bivariat Regression:
Modelling a sample

*Y,=b, b x;te
e =1,...n n = # cases in the sample
* € is usually called the residual (mot the error

term as in the population model)

* Y and X must be defined unambiguously, and
Y must be interval scale (or ratio scale) in
ordinary regression (OLS regression)

Spring 2010 © Erling Berge 2010 65

An example of a bad regression

* The example following contains a series of
errors. If you present such a regression in
your term paper you will fail

* Your task is to identify the errors as quickly
as possible and then never do the same

* Clue: look again at the distributions of the
variables above

Spring 2010 © Erling Berge 2010 66
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Estates

Model Summary

Importance of public control of sales of agric.

Model

R

Adjusted
R Square Square

R

Std. Error of the Estimate

.047(a)

.002

.000

2.213

Spring 2010
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a Predictors: (Constant), NUMBER OF DEKAR LAND OWNED

67

Importance of public control of sales of agric. Estates

ANOVA(b)
Sum of
Model Squares df | Mean Square | F Sig.
1 Regression 4.145 1 4.145| .846|.358(a)
Residual 1851.905| 378 4.899
Total 1856.050 | 379

Spring 2010
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a Predictors: (Constant), NUMBER OF DEKAR LAND OWNED
b Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Importance of public control of sales of agric. Estates

Coefficients (a)

COERDO O

Unstandardized Standardized
Model Coefficients Coefficients t Sig.
B Std. Error Beta
1 (Constant) 4.610 131 35.233| .000
NUMBER OF
DEKAR LAND .000 .000 -.047 -.920| .358
OWNED
a Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.
Spring 2010 © Erling Berge 2010 69
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Scatterplot with regression line
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Assumptions needed for the use of
OLS to estimate a regression model

OLS: ordinary least squares (minste kvadrat metoden)

Requirements for OLS estimation of a regression
model can shortly be summed up as

* We assume that the linear model is correct (true) with
independent, and identical normally distributed error
terms ( ’normal i.i.d. errors”)

Spring 2010 © Erling Berge 2010 72
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Estimation method: OLS
* Model Y, =b,+ b, x;; + ¢,
The observed error (the residual) is
* ¢;=(Y;-Dby-b;xy)
Squared and summed residual
* Zi(€)*=Z; (Y- by - by x)?
Find b, and b, that minimizes the squared sum
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Relationship sample - population (1)

* A new mathematical operator: E[2] meaning the expected value of
[2] where & stands for some expression containig at least one
variable or unknown parameter, e.g.

* E[Y;] =E[by +b, x;; +¢]
=B+ B Xy
» Note in particular that in our model
* E[bg] =By
* E[b]=p,
* Ele; ] =¢g;
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Relationship sample — population (2)

* Relationship sample - population is determined by the
characteristics that the error term has been given in the
sampling and observation procedure

 In a simple random sample with complete observation
E[ € ] =0foralli, and
var [g;] = o for all i

NB: var(2) is a new mathematical operator meaning

’the procedure that will find the variance of some
algebraic expression 7’
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Complete observation

» Make it possible to make a completely specified
model. This means that all variables that
causally affects the phenomenon we study (Y)
have been observed, and are included in the
model equation

* This is practically impossible. Therefore the
error term will include also unobserved factors
affecting (Y)
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Testing hypotheses I

In reality H,, is true

In reality H, is
untrue

We conclude that
H, is true

Our method gives the
correct answer with

probability 1 —a

Error of type 11
(probability 1 — )

We conclude that
H, is untrue

Error of type [

The test level a is the
probability of errors
of type I

Our method gives the
correct answer with

probability B (=
power of the test)

Spring 2010
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Testing hypotheses 11

» A test is always constructed based on the
assumption that H; is true

* The construction leads to a
— Test statistic

* The test statistic is constructed so that is has
a known probability distribution, usually

called a

— Sampling distribution

Spring 2010

© Erling Berge 2010

78

© Erling Berge 2010

Spring 2010

39



Ref.: http://www.erlingberge.no/

Testing hypotheses 111

* It is easier to construct tests based on the
assumption that it is true that a particular test
statistic is zero, [H, stating that a parameter 1s 0],
than any particular other value

* In regression this means that we assume a
particular parameter 3 = 0 in order to evaluate
how large the probability is for this to be true
given the sample we have observed
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The p-value of a test

» The p-value of a test gives the estimated
probability for observing the values we have in
our sample or values that are even more in accord
with a conclusion that H, is untrue; assuming
that our sample is a simple random sample from
the population where H, in reality is true

» Very low p-values suggest that we cannot believe
that H, 1s true. We conclude that B # 0
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T-test and F-test

= Sums of squares
= TSS =ESS +RSS
= RSS=3(e)?=2(Y,-Y)> distance observed- estimated value
= ESS=3,(Y,- Y)? distance estimated value - mean
» TSS =3(Y; - Y)? distance observed value — mean

= Test statistic
= t=(b-B)/SE, SE = standard error
= F=[ESS/(K-1)]/[RSS/(n-K)] K =number of model parameters
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Confidence interval for 3

* Picking a t_- value from the table of the t-
distribution with n-K degrees of freedom makes
the interval

<b—1,(SE;), b+ 1t,(SE,) >
into a two-tailed test giving a probability of a for
committing error of type I

* This means that b -t (SE,) < <b +t(SE,) with
probability 1 — a
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Coefficient of determination

Coefficient of determination:
* RZ=ESS/TSS = 20—/ (%-V)’
— Tells us how large a fraction of the variation around

the mean we can “explain by” (attribute to) the
variables included in the regression (Y; = predicted y)

* In bi-variate regression the coefficient of
determination equals the coefficient of correlation:
1ryu2 = Sy, /848,

* Co-variance: s, = L_Zn:m—\?)(ui—u)
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Detecting problems in a regression

» Take a second look at the

example presented above where

—Y = IMPORTANCE OF PUBLIC CONTROL
OF SALES OF AGRICULURAL ESTATES

_ X = NUMBER OF DEKAR LAND OWNED
—-Y; =by+b; xj; + ¢

What was the problem in this example?

Spring 2010 © Erling Berge 2010 84
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Fotnote:

« ¢, indikerer residual (estimert for case nr11
utvalet)

+ ¢, Indikerer feilleddet (uobservert for case nr
11 populasjonen)
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What is wrong in this scatter plot with regression line?

10—
o o
=
B 8- o oo o
]
=
= © CGEEEEYCOID o o
S
=
g 6— @ D O o
wn
=
= ©am DO © o
wn
=
S 4— o como o
=
= onenaD o
)
a
e 2 CEIIRND D> o
S
—
acEmD©®  © o
0
T T T T T T
o 20000 40000 60000 80000 100000

NUMBER OF DEKAR LAND OWNED

Spring 2010 © Erling Berge 2010 86

© Erling Berge 2010 43



Ref.: http://www.erlingberge.no/

In general: what can possibly cause problems?

« Omitted variables (specification error)

* Non-linear relationships (specification
€rror)

 Non-constant error term
(heteroskedastisitet)

 Correlation among error terms
(autocorrelation)

* Non-normal error terms

Spring 2010 © Erling Berge 2010
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Problems also from

High correlations among included variables
(multicollinearity)

High correlation between an included and
an excluded variable (spurious correlation
in the model)

Cases with high influence

Measurement errors

Spring 2010 © Erling Berge 2010
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Non-normal errors:

* Regression DO NOT need assumptions about the
distribution of variables

» But to test hypotheses about the parameters we need to
assume that the error terms are normally distributed
with the same mean and variance

 If the model is correct (true) and n (number of cases) is
large the central limit theorem demonstrates that the error
terms approach the normal distribution

* But usually a model will be erroneously or
incompletely specified. Hence we need to inspect and
test residuals (observed error term) to see if they actually
are normally distributed

Spring 2010 © Erling Berge 2010 89

Residual analysis

* This is the most important starting point for
diagnosing a regression analysis

Useful tools:
* Scatter plot
Plot of residual against predicted value

Histogram

Box plot
* Symmetry plot
* Quantil-normal plot
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What went wrong?
(1) residual-predicted value plot
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Normal Q-Q Plot of Unstandardized Residual
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Power transformations

May solve problems related to
* Curvilinearity in the model

Outliers

Influential cases

Non-constant variance of the error term
(heteroscedasticity)

* Non-normal error term

NB: Power transformations are used to solve a problem. If you

do not have a problem do not solve it.

Spring 2010 © Erling Berge 2010
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Power transformations (see H:17-22)

Y* : read Inverse
“transformed Y” transformation
(transforming Y to Y*)  (transforming Y* to Y)
c Y¥=Y! >0 « Y=[Y*]"" >0
* Y*=In[Y] g=0 « Y=exp[Y*] q=0
*Y*=-[Y'] q<0 . Y=[-Y*]"ig<0

Spring 2010 © Erling Berge 2010
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Power transformations: consequences

e X*=X1
—q >1 increases the weight of the right hand tail relative to the left
hand tail
—q =1 produces identity
—q <1 reduces the weight of the right hand tail relative to the left
hand tail
« If Y= In(Y) the regression coefficient of an interval scale
variable X can be interpreted as % change in Y per unit
change in X

Eg.if In(Y)=b,+b, x+e
b, can be interpreted as % change in Y pr unit change in X

Spring 2010 © Erling Berge 2010 95

Point of departure
X =NUMBER OF DEKAR LAND OWNED

200 —

150 —

100 —

Frequency
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Mean = 21885,17
Std. Dev. = 38279.311

(N = 380
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NUMBER OF DEKAR LAND OWNED
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Frequency

Power transformed
X =NUMBER OF DEKAR LAND OWNED

Frequency
w =

¢¢¢¢¢¢¢ 50,00 100,00 150,00 X 2,00 4,00 6,00 8,00
SQRTAREAOWNED LNAREAOWNED

SQRT=square root of areaowned — LN= natural logarithm of (areaowned+1)

Spring 2010 © Erling Berge 2010 97
Power transformed
X =NUMBER OF DEKAR LAND OWNED
o 5v:ml’oint:&po\i\(/i(:)Arcaownf::o 20,00
Point3power = 0,3 power of areaowned
98
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Does power transformation help?

Normal Q-Q Plot of Unstandardized Residual

Fr
\
Expected Normal Value

M
T T T
2,00 4,00000

0 000000 200000
Unstandardized Residual

25 00 25
Observed Value

0.3 power-transformation gives lighter tails and no outliers
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Box plot of the residual shows
approximate symmetry and no outliers
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Curvilinear regression

» The example above used the variable
’Point3powerAreaowned”, or 0.3 power of number of
dekar land owned:

 Point3powerAreaowned = (NUMBER OF DEKAR LAND OWNED)?3

The model estimated is thus

Yi=by+ by (x;) +¢

y; = by + b, (Point3powerAreaowned; ) + €;

¥, =4.524 + 0.010*(NUMBER OF DEKAR LAND OVVNEDi)O'3

Spring 2010 © Erling Berge 2010 101
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Summary

In bivariate regression the OLS method finds the ’best” LINE or
CURVE in a two dimensional scatter plot

Scatter-plot and analysis of residuals are tools for diagnosing
problems in the regression

Transformations are a general tool helping to mitigate several types
of problems, such as

— Curvilinearity

— Heteroscedasticity

— Non-normal distributions of residuals

— Case with too high influence

Regression with transformed variables are always curvilinear.
Results can most easily be interpreted by means of graphs
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Expected Normal Value

SPSS printout vs the book (see p16)
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Reading printout from SPSS (1)

Descriptive Statistics Mean Std. Deviation! N?

I. OF P. CNTR. OF SALES OF

AGRIC. EST. 4.61 2.185 307

Point3powerAreaowned 8.5032 5.31834 307
Change Statistics

M

o R Std. Error

d Squa | Adjusted of the R Square Sig. F

el R re’ | R Square* | Estimate’ | Change | F Change | dfl | df2 | Change

1 .024(a) | .001 -.003 2.188 .001 182 1| 305 .670

a Predictors: (Constant), Point3powerAreaowned
b Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.

Spring 2010 © Erling Berge 2010 105

Footnotes to the table above (1)

Standard deviation of the mean
Number of cases used in the analysis

Coefficient of determination

ol A e

The adjusted coefficient of determination (see
Hamilton page 41)

5. Standard deviation of the residual
s. = SQRT ( RSS/(n-K)),
where SQRT (*) = square root of (*)
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Reading printout from SPSS (2)
Sum Mean
Model of Squares? df Square F! Sig.?
1 Regression 870 | 870 182 .670(a)
Residual 1460.224 305 4788
Total 1461.094 306
*Sums of squares: TSS =ESS + RSS
*RSS =X(e)? = Z(Y;- Y¥,)* :sum of squared (distance observed — estimated value)
*Mean Square = RSS / df For RSS it is known that df=n-K
K equals number of parameters estimated in the model (b, og b,)
Here we have n=307 and K=2, hence Df = 305
Spring 2010 © Erling Berge 2010 107
Fotnote:
! F-observatoren for nullhypotesa beta, = 0 (sja Hamilton side

45)

« 2 p-verdien for F-observatoren: dvs sannsynet for 4 finne ein sa
stor eller storre F-verdi gitt at nullypotesa er rett

« 3Kvadratsummar
— TSS = ESS + RSS
— RSS = X,(e,)*= Z(Y; - Y,)? avstand observert — estimert
verdi
— ESS = XY, - Y)? avstand estimert verdi — gjennomsnitt
— TSS = 2(Y, - Y)?avstand observert verdi — gjennomsnitt

Spring 2010 © Erling Berge 2010 108
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Footnotes to the table above (2)

1. F-statistic for the null hypothesis B, =0 (see
Hamilton p45)

2. p-value of the F-statistic: the probability of finding a
F-value this large or larger assuming that the null
hypothesis is correct

3.  Sums of squares

TSS =ESS + RSS

RSS = X(e;)*= Z(Y,- Y;)? distance observed value — estimated
value

ESS=2,(Y,-Y)* distance estimated value — mean

4. TSS=3(Y,-Y)? distance observed value — mean
Spring 2010 © Erling Berge 2010 109
Reading printout from SPSS (3)
Standa-
M rdized
o Unstandardized Coeffic 95% Confidence
d Coefficients ients Interval for B
e Lower Upper
1 Boun Boun
B! | Std. Error? Beta? t*| Sig.? d d
1| (Constant)
4.524 236 19.187 | .000 4.060 4.988
Point3-
pow:ﬁ_ 010 024 024 426 .670 -.036 056
owned
Spring 2010 © Erling Berge 2010 110

© Erling Berge 2010

Spring 2010

55



Ref.: http://www.erlingberge.no/

Spring 2010

Footnotes to the table above (3)

Estimates of the regression coefficients b, og b,
Standard error of the estimates of b, og b,

Standardized regression coefficients: b5 =
b,*(s,/s,) see Hamilton pp38-40

t-statistic for the null hypothesis beta; =0 (see
Hamilton p44)

p-value of the t-statistic: the probability of
finding a t-value this large or larger assuming
that the null hypothesis is correct

© Erling Berge 2010 111
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Multiple regression

Hamilton Ch 3 p65-101
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Recall from first lecture:
Bivariate regression: Modelling a sample
* Y, =b, T b x;te

- 1=1,..n n = # cases in the sample

* €, is usually called the residual (not the error term as in the
population model)

* Y and X must be defined unambiguously, and Y must be interval
scale (or ratio scale) in ordinary regression (OLS regression)

Spring 2010 © Erling Berge 2010 113

Recall from first lecture:
Bivariate regression: Modelling a population

*Yi=Bo+Bixytg
* i=1,...,n n = # cases in the population
* §;1s the error term for case no 1

* Y and X must be defined unambiguously, and
Y must be interval scale (or ratio scale) in
ordinary regression (OLS regression)

Spring 2010 © Erling Berge 2010 114
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Summary on bivariate regression

In bivariate regression the OLS method finds the "best” LINE or
CURVE in a two dimensional scatter plot

Best is defined as the “a” and “b” that minimizes the sum of squared
deviations between the line/ curve and observed variable values

Scatter-plot and analysis of residuals are tools for diagnosing
problems in the regression

Transformation (by powers) is a general tool helping to mitigate several
types of problems, such as

— Curvilinearity

— Heteroscedasticity

— Non-normal distributions of residuals

— Cases with too high influence

Regression with (power) transformed variables are always curvilinear.
Results can most easily be interpreted by means of graphs
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Multiple regression: model (1)

The goal of multiple regression is to find the net
impact of one variable controlled for the impact
of all other variables

Let K= number of parameters in the model (this means
that K-1 1s the number of variables)

Then the population model can be written

¥i = Bo T By X1 By xpp + By X3 Tt Bry Xk T g

Spring 2010 © Erling Berge 2010 116
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Multiple regression: model (2)
e This can also be written
v = Ely;] t ¢,

this means that
» E[y,] 1s read as “the expected value of y,”

* Ely;] =By + By x;; + Bo xpp + B3 X3+t Broy Xk

Spring 2010 © Erling Berge 2010 117

Multiple regression: model (3)

» We will find the OLS estimates of the model
parameters as the b-values in

i =Dbo T by Xj; + by Xpp by X5+t by X
(¥, 1s read as “estimated” or predicted” value of y, )

that minimizes the squared sum of the residuals

RSS =zn:(Yi—\(_)2 =Zn:ef
i=1 i=1

Spring 2010 © Erling Berge 2010 118
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Estimation methods
* The OLS method means that parameters are found by
minimizing RSS (residual sum of squares)

 But this is not the only method for finding suitable b-
values. Two alternatives are:
— WLS: Weighted least squares
— ML: maximum likelithood

Spring 2010 © Erling Berge 2010 119

More on testing hypotheses

* We can draw many samples from a population

* In every new sample we can estimate new values (a new b,-
value) of the same population regression parameter ([3,)

 If we make a histogram of the many estimates of e.g. b, we
will see that b, has a distribution. This distribution is called
the sampling distribution of b,

 Different types of parameters have different types of
sampling distributions

* Regression parameters (OLS regression b,) have t-
distributions (Student’s t-distribution)

Spring 2010 © Erling Berge 2010 120
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E B""Gb

T T T
2,00 -1,00 0,00 1,00 2,00

Sampling distribution of the regression parameter b:
E[b]=p
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On partial effects (1)

» Example with 2 variables
* [f we estimate a model with 2 x-variables
¥; = by T by x; + by x;, g

1
it will in principle involve 3 different correlations:
* Between y and x,
* Between y and x,

* Between x,; and X,
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On partial effects (2)

» This might have been represented by 3 different bivariate regressions

where the third variable was kept constant

(1) y = ay;; T byX; T ey X, constant

yIx
(2) Y= aylx2 + bny2X2 + eyIX2 Xl constant

B)x=a, 0 T X, t €, Y constant

x1Ix

the index “’yIx1” is read “from the regression of y on x1”

* Equations (2) and (3) can be rewritten as:

Spring 2010 © Erling Berge 2010 123

On partial effects (3)

(2) enyZ -y - (ayIXZ T bny2X2 )

(3) exllx2 - Xl - (aX11X2 + bxllx2X2 )

We may interpret this as a removal of the effect of x, fromy
and from x,

We also see that e,;,, and ey, ,, become the new y and x,
variables where the effect of x, has been removed
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On partial effects (4)

» If we, based on this, make a new regression

€ atbe

ylx2 - x1Ix2

we find that
a=0
b =b, from the regression
Yi=bytbxy +byxpte
* b, 1s in other words the effect of x; on y after we
have removed the effect of x,
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Experiments and partial effects

» Experiments investigate the causal connection
between two variables controlled for all other causal
impacts

» Multiple regression is a kind of half-way replication
of experiments — the next best solution — and is a
close relative of quasi-experimental research designs
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to by,

Spring 2010
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Partial effects

A leverage plot for y and x, is a plot where

» y-axis is the residual from the regression of y on all
x-variables except x, , and

* x-axis 1s the residual from regression of x, on all
the other x-variables

The regression line in such a plot will always go
through y=0 and will have a slope coefficient equal

127

An example with 2 independent variables

Table 2.2 Dependent:

Summer 1981 Water Use B Std. Error t Sig.
(Constant) 1201.124 123.325 9.740 .000
Income in Thousands 47.549 4.652| 10.221 .000

Table 3.1 Dependent:

Summer 1981 Water Use B Std. Error t Sig.
(Constant) 203.822 94361 |  2.160 031
Income in Thousands 20.545 3.383 6.072 .000
Summer 1980 Water Use 593 .025 23.679 .000

the last line. SPSS put it on the first line.

variable?
Spring 2010
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From the table 2.2 (p46) and 3.1 (p68) in Hamilton. In the tables in the book the constant is on

Question: What does it mean that the coefficient of income declines when we add a new

128
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Fotnote:
 Tolking av koeffisientane 1 tabell 3.1

» Konstantverdien viser gjennomsnittleg vassforbruk
til ein person etter at verknaden av inntekta og
vassforbruket aret for er kontrollert for og sett til
null.

* regresjonskoeffisienten for inntekt pa 20,5 tyder at
predikert vassforbruk nér vi kontrollerer for
vassforbruk 1 tidlegare ér vil auke med 20,5
kubikkfot vatn for kvar tusen dollar inntekta aukar.
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On the addition of new variables
It is not common that existing theory will give precise prescriptions for
what variables to include in a model. Usually there is an element of trial
and error in developing a model
When new variables are added to a model several things happen
— The explanatory force increase: R? increase, but will the increase be significant?

— The coefficient of the regression shows the effect on y. Is this effect significantly
different from 0?

— If the coefficient is significantly different from 0, is it also so big that it is of
substantial interest?

— Spurious coefficients can decline. Do the new variable change the interpretation of
the effect of the other variables?
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Parsimon
» Parsimony is what might be called an aesthetic criterion of

a good model. We want to explain as much as possible of
the variation in y by means of as few variables as possible

 The adjusted coefficient of determination, Adjusted R?, is
based on parsimony in the sense that it takes into
consideration the complexity of the data relative to the
complexity of the model by the difference between n and
K

(n-K is the degrees of freedom in the residual,
n = number of observations, K = number of estimated parameters)
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Irrelevant variable

* Including irrelevant variables

— A variable is irrelevant if the real effect () is 0; or more
pragmatically, if it is so small that it has no substantive interest

— Inclusion of an irrelevant variable makes the model
unnecessarily complex and will have the consequence that
coefficient estimates on all variables have larger variance
(coefficients varies more form sample to sample)

* Including an irrelevant variable in OLS model estimation is
probably the least damaging error we can do
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Re}evant variable

*  Avariable is relevant 1
— Its real effect (B) is significantly different from 0, and
— Large enough to have substantive interest, and
— It is correlated with other included x-variables
» Ifwe exclude a relevant variable all results from our regression will
be unreliable. The model is unrealistically simple
* Not including a relevant variable is the most damaging
error we can do. But consider requirement 2 and 3. This
makes it a lot easier to avoid this problem.
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Sample specific results?

* Choice of variables is a trade-off among risks. Which risk is
worse depends on the purpose of the study and the strength of
relations

» With a test level of 0.05 one may easily find sample specific
results. In about 5% of all samples a coefficient that show up
as not significantly different from 0 will in reality” be
different from O (3 # 0) and vice versa for those we find to be
significantly different from 0 mayin reality be 0

» The best defence against this is the theoretical argument for
finding an effect different from 0
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Hamilton (s74) example

y; | Post shortage water use (1981)

X;; | Household income, in thousands of dollars

X;, |Pre-shortage water use, in cubic feet (1980)

Xj3 | Education of household head, in years

Xjs | Retirement (coded 1 if household head is retired and 0 otherwise)

X;s | Number of people living in household at time of water shortage
(summer 1981)

X;s | Change in number of people, summer 1981 minus summer 1980
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Table 3.2 (Hamilton p74)

Dependent Variable:

Summer 1981 Water Use B Std. Error t Sig. Beta
(Constant) 242220 | 206.864 1171 | 242
Income in Thousands 20.967 3.464 6.053 | .000 184
Summer 1980 Water Use 492 026 18.671| .000 584
Education in Years -41.866 13.220 -3.167| 002 || -.087
Head of house retired? 189.184 95.021 1.991| .047 058
# of People Resident, 1981 248.197 28.725 8.641 | .000 277
Increase in # of People 96.454|  80.519 1.198 | 232|| .031

How do we interpret the coefficient of “Increase in # of People” ?

What leads to less water use after the crisis?

Spring 2010
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Fotnote:

» [ Hamilton sine tabellar er det ei kolonne som gir gjennomsnittet av
variablane. Den ma vi i SPSS leggje til sjolve om vi enskjer den.

+ Samanlikna med 2-variabel eksempelet ovanfor ser vi
» Determinasjonskoeffesienten har auka fra 0.6138 til 0.6773

» Koeffisientane for inntekt og vassforbruk1980 har ikkje endra seg
substansielt

» Koeffisientane utanom konstanten og auke i tal personar er signifikant
ulik 0 og store nok til at dei har substansiell interesse

» Konstantleddet ma vi alltid ha med
+ Kva skal vi gjere med ” merease n#otpeople” ? (droppe eller ikkje)

* Gitt ferkriseniva i vassforbruk vil etterkriseforbruk minke der inntekta
gér ned, utdanninga gér opp og hovudpersonen i hushaldet ikkje er

ensjonist.
pring 5861 © Erling Berge 2010 137

Standardized coefficients

 Standardized variables (z-scores) have standard
deviation as unit of measurement and a mean of 0

(X = X)

iX

 Standardized regression coefficients (beta-weights, or
path coefficients)

b’ =by(sy/s,) (varies between -1 and +1)

» Predicted standard score of'y; (Z;,) = 0.18z;, + 0.58z,
—0.09z;; + 0.06z;, + 0.28z;5 + 0.03z;,
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Fotnote:

* Ein ber vere varsam med & nytte beta-
vektene til & samanlikne effekten av ulike
variablar. Nar ein gjer det ma ein akseptere
at standardavvik pr standardavvik er ei
rimeleg maleeining for effekt.

 Substansiell tolking av effektane vil ofte
vere betre.

« Slike koeffisientar kan ikkje nyttast til
samanlikning pa tvers av utval.
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t-test

+ The difference between the observed coefficient (b,) and the
unobserved coefficient (B, ) standardized by the standard deviation
of the observed coefficient (SE,, ) will usually be very close to zero
if the observed b, is close to the population value. This means that if
we in the formula

* t=(by - B/ SE,, substitutes B, = 0 (H,) and find that ”t” is small we
will believe that the population value B, in reality equals 0 (we
cannot refute H)

» How big ”t” has to be before we stop believing that 3, = 0 we can
find from knowing the sampling distribution of by and SE,
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"t” has a_sam_5ling distribution called the t-distribution The t-distribution varies with
the number of degrees of freedom (n-K) and is listed according to level of

significance a
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Confidence interval for 3 (1)

* We have defined t = (b, - B,)/ SE,, This means that
* t*(SE,, ) =b,— By or B, =b, —t * (SE,, ) where t follows

the t distribution with n-K degrees of freedom

 Chosing a t -value from the table of the t-distribution with
n-K degrees of freedom then it is true that

* Prib —t* (SE, ) <P <by +t*(SEy )} =1-a

* Then if B,= b, is correct, a two tailed test will have a
probability of a to reject H;, : B,= 0 when H, in reality is
correct (type I error)
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Fotnote:

» Det kan ogsa lagast konfidensintervall for
estimert y ( E[y] ) anten for regresjonslina
eller for einskild verdiar for eit case (sja
side 79)
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Confidence interval for 3 (2)

 This means that there is a probability of a that 3,
in reality is outside the interval

 This is equivalent to saying that
bk - t(x(SEbk) = Bk =< bk + ta(SEbk)

is correct with probability 1 — a (our confidence of
this resultis 1 - o)

* Pr{b, —t*(SEy) <Py <b + t*(SE) } =1-a
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F-test: big model against small (1)
Define:

RSS

FnTK = H
RSS[K]

n-K

] — RSS

[K]

RSS, = residual sum of squares with index
[*] where * stands for number of
parameters in the model

Spring 2010 © Erling Berge 2010
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Fotnote:

* H er lik skilnaden 1 talet pa parametrar
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F-test: big model against small (2)

* Bigmodel:  RSS
e Small model: RSS

* H is the difference in number of parameters
in the two models

FH_ will have a sampling distribution
called the F-distribution with
H and n-K degrees of freedom

Spring 2010 © Erling Berge 2010
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Example (Hamilton table 3.1 and 3.2

Small model
Table 3.1 Sum of Squares df Mean Square F Sig.
Regression
(Model) 671025350.237 2 335512675.119 391.763 .000(a)
(Explained)
Residual 422213359.440 493 856416.551
Total 1093238709.677 495
Large model
Table 3.2 Sum of Squares df Mean Square F Sig.
Regression 740477522.059 K-1= 6 123412920.343 171.076 |  .000(a)
Residual 352761187.618 | n-K=489 721393.022
Total 1093238709.677 n-1=495

Test if the big model (7 parameters) is better than the small (3 parameters)
Spring 2010 © Erling Berge 2010
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Notes to the example

» K =number of parameters of the big model (6 variables plus
constant) = 7

* H=K —[number of parameters in the small model (2 variables plus
constant)]=7-3=4

o RSSpy = 422213359.440
« RSS; =352761187.618
* n=496

* n—K=496-7=489

* (RSSps; — RSS{K})/H = (422213359.440 - 352761187.618)/4 =
17363042.9555

* RSSy,/(n-K)=352761187.618/489 = 721393.0217
« F{H, n-K} = 17363042.9555/721393.0217 = 24.0688
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Testing all parameters in one test

« If the big model has K parameters and we let the small
model be as small as possible with only 1 parameter (the
constant = the mean) our test will have H=K-1. Inserting
this into our formula we have

RSS,, —RSS

R =—pse
RS,

n-K

This is the F-value we find in the ANOVA tables from SPSS
[note: {RSS[1] - RSS[K]} = ESS (explained sum of squares) |

(K]
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Multicollinearity (1)

* Multicollinearity only involves the x-variables, not y, and is
about linear relationships between two or more x-variables

 If'there is a perfect correlation between 2 explanatory
variables, e.g. x and w (r,,, = 1) the multiple regression

model breaks down

* The same will happen if there is perfect correlation between
two groups of x-variables
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Multicollinearity (2)

Perfect correlation is rarely a practical problem

But high correlations between different x-variables or between
groups of x-variables will make estimates of their effect
unreliable.

The effects of two highly correlated variables (like x and x?)
may be arbitrarily assigned to one, the other, or both

Individual regression coefficients will have large standard
deviations and t-tests will practically speaking have no interest
whatsoever

F-tests of groups of variables will not be affected by this
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Search strategies

* There are methods for automatic searches for explanatory
variables in a large set of data

» The best advice to give on this is to avoid using it

* One problem is that the p-values of the tests from such
searches are wrong and too ’kind”. The the probability of
making Type I errors increase with the number of tests

 This difficulty is called “the problem of multiple
comparisons”

* Another problem is that such searches do not work well if
the variables are highly correlated
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Dummy variables: group differences

» Dichotomous variables taking the values of 0 or 1 are
called dummy variables, or more generally binary
variables

* In the example in table 3.2 (p74) x,, (Head of house
retired?) 1s a dummy variable

* First put into the equation x,, = 1 then x;, =0
y; =242 + 21x;, + 0.49x,, - 42x;; + 189, + 248x;5+ 96x,5 og
* Explain what the two equations tell us
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Fotnote:
e For X4 =1 farvi
o y; =431 +21x;, + 0.49x;, - 42x;; + 248x;5 +
96X
* For X4 =0 far vi
oy, =242+ 21x;, + 0.49x,, - 42X, + 2485+

96x
« Skilnaden ligg 1 ulik skjeringspunkt med y-
aksen

Interaction

 There is interaction between two variables
if the effect of one variable changes or
varies depending on the value of the other

variable
X % Y
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Interaction effects in regression (1)
If we do a non-linear transformation of y all estimated effects
will implicitly be interaction effects

Simple additive interaction effects can be included in a linear
model by means of product terms where two x-variables are
multiplied

¥i =Dy + byx; + byw; + byxw;
Conditional effect plots will be able to illustrate what
interaction means
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Fotnote:

* Sett inn for X=0,1,2,3, ...
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Interaction effects in regression (2)

An interaction effect involving x and w can
be included in a regression model by means
of an auxiliary variable equal to the product
of the two variables, i.e.

Auxiliary variable H=x*w

¥; = by + b *x; + by*w; + by*H; + ¢

¥; = by + b *X; + by*w, + by*x, Fw; + g

1

Spring 2010 © Erling Berge 2010
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Fotnote:

* Rekn ut:
» Sett inn for w=0,1,2,3, ... Osv
» Og finn koeffisienten for x

Spring 2010 © Erling Berge 2010

160

© Erling Berge 2010

Spring 2010

80



Ref.: http://www.erlingberge.no/

Let

Spring 2010

© Erling Berge 2010

 y = natural logarithm of chloride concentration
» x = depth of well (1=deep, O=shallow)

* w = natural logarithm of distance from road

Example from Hamilton(p85-91)

* Xw = interaction term between distance and depth
(product x*w). Then

¥; = by + byx; + byw; + byxiw;

First take a look at the simple models without interaction

161

Figure 3.3 is based on

Figures 3.3 and 3.4 (Hamilton p85-86)

Dependent Variable:

InChlorideConcentra B Std. Error Beta t Sig.
(Constant) 3.775 429 8.801 | .000
x= BEDROCK OR SHALLOW WELL? -.706 477 -.205 -1.479 | .145
Figure 3.4 is based on

Dependent Variable:

InChlorideConcentra B Std. Error Beta t Sig.
(Constant) 4.210 961 4.381 .000
w= InDistanceFromRoad -091 180 -071 -506 615
x= BEDROCK OR SHALLOW WELL? -.697 481 -.202 -1.449 154
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Fotnote:
« y =naturleg logaritme av klorid konsentrasjon

* x = djupna av brennen (1=djup, 0=grunn)
» w = naturleg logaritme av avstand fra vei

« xw = interaksjonsledd mellom avstand og djupn
(produktet x*w)

 Tabell 3.3 med berre x inkludert gir y-gjennomsnittet
for dei to typane brennar (figur 3.3 neste side)

 Tabell 3.4 med x og w inkludert gir oss samanhengen
mellom avstand frd vei og saltureining for dei to
typane brennar (figur 3.4 nedanfor)
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Spring 2010

Fotnote:
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* Fratabell 3.3 §,=3.78 - .71x;
« Sett inn for x, = 1 (djup brenn) og x, =0
(grunn brenn)

165

Figure 3.4
yi = 4.21-.70x, -.09w,

Let

x;= 1 (deep)
and

x; = 0 (shallow)
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Fotnote:

* Fra tabell 3.4 §, = 4.21-70x-.09w,

* Sett inn for x, = 1 (djup brenn) og x; =0

(grunn brenn)
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Figures 3.5 and 3.6 (Hamilton p89-91)

Take note of significance changes

Figure 3.5 is based on

Dependent Variable: InChlorideConcentra B Std. Error Beta t Sig.
(Constant) 3.666 .905 4.050 .000
w= InDistanceFromRoad -.029 202 -.022 -.144 .886
x*w= InDroadDeep -.081 .099 -.128 -.819 417
Figure 3.6 is based on

Also see Table 3.4 in Hamilton p90

Dependent Variable: InChlorideConcentra B Std. Error Beta t Sig.
(Constant) 9.073 1.879 4.828 .000
w= InDistanceFromRoad -1.109 384 -.862 -2.886 .006
x= BEDROCK OR SHALLOW WELL? -6.717 2.095 -1.948 -3.207 .002
x*w= InDroadDeep 1.256 427 1.979 2.942 .005

Spring 2010

© Erling Berge 2010

© Erling Berge 2010

Spring 2010

84



Ref.: http://www.erlingberge.no/

Fotnote:

y = naturleg logaritme av klorid
konsetrasjon

x = djupna av brennen (1=djup, 0=grunn)

w = naturleg logaritme av avstand fra vei

xw = interaksjonsledd mellom avstand og

djupn (produktet x*w)

Leggo merke til korleis signifikansnivaet

endrar seg for dei ulike modellane.

169
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Figure 3.5 700
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Fotnote:

* Fratabell 3.5

§: = 3.67 - .03w, -.08x,w,

+ Sett inn for x; = 1 (djup brenn) og x;, = 0 (grunn brenn)

* For x; =1 (djupe brennar) vert samanhengen ureining og

avstand
« §,=3.67-.11w,

* For x, = 0 (grunne brennar) vert samanhengen ureining og

avstand
© §.=3.67-.03w,

« Test av koeffisienten for interaksjonsleddet vil her teste om vi
har ulike vinkelkoeffisient for dei to typane brennar
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Fotnote:
* Fratabell 3.6 ¥, =9.07-6.72x,-1.11w, + 1.26x,w;
« Sett inn for x, = 1 (djup bronn) og x; = 0 (grunn brenn)

* For x, = 1 (djupe brennar) vert samanhengen ureining
og avstand

A

© ¥.=235+.15w,

* For x; = 0 (grunne brennar) vert samanhengen ureining
og avstand

A

« ¥.=907- 111w,

« NB: Legg merke til korleis interaksjonsleddet totalt
endrar samanhengane mellom variablane
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Multicollinearity

 Taking all three variables, x, w, and x*w will
introduce an element of multicollinearity. This
means that we cannot trust tests of single
coefficients

* But as shown in the previous example one can not
drop any one of the variables without dropping a
relevant variable

» F-test of e.g. w and z*w simultaneously
circumvents the test problem, and with some
experimentation with different models one may
see 1f excluding w or x*w changes the relations
substantially
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Testing in the presence of
multicollinearity

 To specify a model correctly we may need
to add terms containing variables already in
the equation. This applies to
— Interaction terms

— Curvilinear relations (use of squared variables
in addition to the one present)

» Let us take a look at curvilinear relations:
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Test for Curvilinear Relations

Testing for curvilinearity in “age”
— Set age squared = “age2”
Remember:

— Age is one substance variable that may be represented either by
one technical variable or by two technical variables (somewhat
like one variable being represented by different ways of coding)

Substance variable Age is represented by
— age

or
— age +age2
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Testing for curvilinearity
* Model 0

— (some variables)

* Model 1
— (some variables) + age
* Model 2
— (some variables) + age + age2

* In model 1 the impact of Age is tested by the t-test and the
corresponding p-value (there is no difference between the
substance variable and its technical representation)
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Testing for curvilinearity 2

* In model 1 the test may conclude that Age does not
contribute to the model. If so we go to model 2

* In model 2 the testing of the impact of the substance
variable Age (represented by age and age?2) is done by an F-
test of Model 2 against Model 0

* The F-test may conclude that Age does not contribute to the
model. Then we drop both age and age?2.

* The F-test may conclude that Age (represented by age and
age2) contributes significantly to the model. Then we keep
both age and age2
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Testing for curvilinearity 3

* In model 1 the test may conclude that Age does
contribute to the model. If so we may still go to
Model 2

 If either the t-test of model 1, or the F-test of
model 2, or both show that Age contributes
significantly to the model, there are several
possibilities
— T-test significant, F-test not significant: drop age2, keep
age
— T-test significant, F-test significant, p-value of age is
unchanged or higher (compared to model 1) while p-

value of age?2 is clearly insignificant: drop age2, keep
age
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Testing for curvilinearity 4

* (continued)

— T-test significant, F-test significant, p-value of age improves
(compared to model 1): keep age2 no matter what p-value for age?2 is

— T-test significant, F-test significant, p-value of age shows no
significance (compared to model 1) while p-value of age2 shows
clear significance: keep age2 no matter what p-value for age is

— T-test significant, F-test significant, p-value of both age and age?2
show no significance but are fairly close. Then the F-test decides.
Keep age2.

» And remember: age2 never appears alone, always with age
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Nominal scale variables

* Can be included in regression models by the use of new

auxiliary variables: one for each category of the nominal
scale variable. J categories implies H(j), j=1,...,J new
auxiliary variables

If the dependent variable is interval scale and the the only
independent variable is nominal scale analysis of variance
(ANOVA) is the most common approach to analysis

By introducing auxiliary variables the same type of analysis
can be done in a regression model
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Analysis of variance - ANOVA

 Analysing an interval scale dependent variable
with one or more nominal scale independent
variables, often called factors

— One way ANOVA uses one nominal scale variable
— Two way ANOVA uses two nominal scale variable
— Andsoon...

+ Tests of differences between groups are based on
an evaluation of whether the variation within a
group (defined by the ”factors™) is large compared
to the variation between groups
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Nominal scale variables in regression (1)

+ If the nominal scale has J categories a maximum
of J-1 auxiliary variables can enter the regression

If H(), j=1, ..., J-1 are included H(J) have to be
excluded

* The excluded auxiliary variable is called the
reference category and is the most important
category in the interpretation of the results from
the regression
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Fotnote:

* Dersom vi inkluderer alle vil vi fa perfekt
multikollinearitet sidan den siste
hjelpevariabelen alltids vil kunne reknast ut
verdien av pd grunnlag av kunnskap om dei
andre:

« HQ)=1-H(1)-H(Q) - ... - H(j-1)

* berre nér alle dei andre er 0 vil H(J) kunne
bli 1
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Nominal scale variables in regression (2)

Dummy coding of a nominal scale variable

* The auxiliary variable H(j) for a person 1 is
coded 1 if the person belongs to category j on
the nominal scale variable, it is coded O if the
person do not belong to category j

* NB: The mean of a dummy coded variable is the
proportion in the sample with value 1 (i.e. that
belongs in the category)
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Fotnote:

» Skrive med matematisk notasjon:
 H(j) =1 iffi”inneholdti”
. =0 elles
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Nominal scale variables in regression (3)

The reference category
(the excluded auxiliary variable)

* The chosen reference category ought to be
large and clearly defined

* The estimated effect of an included
auxiliary variable measures the effect of
being in the included category relative to
being in the reference category
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Nominal scale variables in regression (4)

» This means that the regression parameter for an
included dummy coded auxiliary variable tells us
about additions or subtractions from the expected
Y-value a person gets by being in this category
rather than in the reference category

* When all auxiliary variables are zero the effect of
being in the reference category is included in the
constant
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Nominal scale variables in regression (5)

Testing [

 Testing if a regression coefficient for an
included auxiliary variable equals 0 answers
the question whether the persons in this
group have a mean Y value different from
the mean value of the persons in the
reference category
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Nominal scale variables in regression (6)

Testing 11

 Testing whether a Nominal scale variable contributes
significantly to a regression model have to be done by
testing 1f all auxiliary variables in sum contributes
significantly to the regression

 For this we use the F-test as explained above. See
formula 3.28 in Hamilton (p80)
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Nominal scale variables in regression (7)

Interaction

¢ When dummy coded nominal scale
variables are entered into an interaction all
included auxiliary variables have to be
multiplied with the variable suspected of
interacting with it
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On terminology (1)

Dummy coding of nominal scale variables are
called different names in different textbooks. For
example it 1s

1. Dummy coding in Hamilton, Hardy, and Weisberg

2. Indicator coding in Menard (and also Weisberg)

3. Reference coding or partial method in
Hosmer&Lemeshow
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Spring 2010

On terminology (2)

To reproduce results from the analysis of
variance (ANOVA) by means of regression
techniques Hamilton introduces a coding of the
auxiliary variables he calls effect coding. Other
authors call it differently:

— It is called effect coding by Hardy
— It is called deviance coding by Menard
— It is called the marginal method or deviance method

by Hosmer&Lemeshow

To highlight particular group comparisons Hardy
(Ch5) introduces a coding scheme called
contrast coding

© Erling Berge 2010 193

Ordinal scale variables

e Can be included as an interval scale if the
unobserved theoretical dimension is continuous and
distance measures seems reasonable

» Also it may be used directly as dependent variable if
the program allows ordinal dependent variables

— In that case parameters are estimated for every level
above the lowest as cumulative effects relative to the
lowest level

Spring 2010
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Nominal scale variables

TYPE OF Valid Cumulative
GROUP Frequency Percent Percent Percent
POLITICIAN 48 12.6 12.6 12.6
FARMER 132 347 347 474
PEOPLE not 200 52.6 52.6 100.0
Farmers or Pol
Total 380 100.0 100.0

Spring 2010 © Erling Berge 2010 195

Example of dummy coding

Nominal scale Auxiliar | variables | H (*)
y
Type of group Code |N H(1)= HQ2)= H@3)=
Pol Farmer | People

Politicians 1 48 1 0 0

Farmers 2 132 |0 1 0

Other People 3 200 |0 0 1 Referenc

e

A variable with 3 ¢ategaries leads to|2 dummy coded cageabl

19%
(2]

in a regression with the third used as reference

Spring 2010
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Example of effect coding

Nominal scala Auxiliary
variable
Type of group Code N H(1)= HQ2)=
Pol Farmer
Politicians 1 48 1 0
Farmers 2 132 0 1
Other People 3 200 |-1 -1 Reference
category

In effect coding the reference category is coded -1. Effect coding
makes it possible to duplicate all F-tests of ordinary ANOVA
analyses.
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Contrast coding

* Is used to present just those comparisons
that are of the highest theoretical interest
* Contrast coding requires

— That with J categories there have to be J-1
contrasts

— The values of the codes on each auxiliary
variable have to sum to 0

— The values of the codes on any two auxiliary
variables have to be orthogonal (their vector
product has to be 0)
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Fotnote:

» Kontrastkoding er nzrt beslekta med
effektkoding. Ein inkluderer fleire
kategoriar 1 ei samanlikning ved & la
vektene for kvar gruppe kategoriar som skal
samanliknast summere seg til 1, -1 for den
eine og +1 for den andre gruppa (jfr side 65
1 Hardy)
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Use of dummy coded variables(1)

Dependent Variable: Std.

L. of political contr. of sales of agric. est. B Error | Beta t Sig.
(Constant) 4.106 | .152 26.991 | .000
Pol 914 | .337| .147| 2.711] .007
Farmer 4211 .240| .096| 1.758 | .080

The constant shows the mean of the dependent variable for those who
belong to the reference category

The mean of the dependent variable for politicians are 0.91 opinion
score points above the mean of the reference category

The mean on the dependent variable for farmers are 0.42 opinion score
points above the mean of the reference category
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Use of dummy coded variables (2)

Dependent Variable: 1. of political

control of sales of agricultural estates B Std. Error t Sig.
(Constant) 4.264 .186 22.954 .000
Number of decare land Owned .000 .000 2.176 | .030
Pol .566 382 1.482 | .139
Farmer -.309 338 -913 362

Spring 2010
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Compare this table with the previous. What has changed?

How do we interpret the coefficient on "Pol” and "Farmer”?

Population model

Sample model

Spring 2010

Recall:
Multiple regression: model

(then K-1 = number of variables)

© Erling Berge 2010

Let K = number of parameters in the model

* ¥i=BotBi X T By X+ B3 X5 ot Py Xk TE
i=1, ... ,N; where N = number of case in the population

* ¥i= by by xj +by Xy by xj3 A by X T e

1=1, ... ,n; where n = number of case in the sample
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A note on the dependent variable in

OLS regression:

The requirement is that Y in OLS regression has to be
interval scale. It has to be able to take any value between
minus infinity and plus infinity.

Deviations from this may cause problems

It is not, I repeat NOT, most emphatically NOT required
that it shall have any particular distribution such as a
normal distribution

In some other types of models this is different. Maximum
likelihood factor analysis for example assumes a
multivariate normal distribution

Normal distributions are assumed in order to be able to do
tests
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Conclusions (1)

» Linear regression can easily be extended to use 2
or more explanatory variables

« If the assumptions of the regression is satisfied
(that the error terms are normally distributed with
independent and identically distributed errors —
“normal 1.1.d. errors”) the regression will be a
versatile and strong tool for analytical studies of
the connection between a dependent and one or
more independent variables
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Conclusions (2)
* The most common method of estimating coefficients for a
regression model is called OLS (ordinary least squares)

 Coeftficients computed based on a sample are seen as
estimates of the population coefficient

» Using the t-test we can judge how good such coefficient
estimates are

» Using the F-test we may evaluate several coefficient
estimates in one test (dummy coded variables, interaction
terms, curvilinear variables)
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Conclusions (3)

* Dummy variables are useful in several ways

— A single dummy coded x-variable will give a test of the
difference in means for two groups (coded 0 and 1)

— Nominal scale variables with more than 2 categories can
be recoded by means of dummy coding and included in
regression anlysis

— By using effect coding we can perform analysis of
variance of the ANOVA type
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Logistic regression

e Hamilton Ch 7 p217-234

Spring 2010 © Erling Berge 2010 207

LOGIT REGRESSION

* Should be used if the dependent variable (Y) is
a nominal scale

* Here it is assumed that Y has the values 0 or 1
* The model of the conditional probability of Y,
E[Y | X], is based on the logistic function

(E[Y | X] is read “the expected value of Y given
the value of X”’)

 But

Why cannot E[Y | X] be a linear function also in
this case?
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The linear probability model: LPM

* The linear probability model (LPM) of y.

when y; can take only two values (0, 1)
assumes that we can interpret E[y; | X.]
as a probability

* X = Xy, X, X35 -+ o5 X(K-l)i}
* Ely; | X{] =b, + 2; b; x;; = Pr[y; =1]
 This leads to severe problems:
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Are the assumptions of a linear regression
model satistied for the LPM?

One assumptions of the LPM is that the residual, e,
satisfies the requirements of OLS

The the residual must be either

—¢=1 —(b0+2jbjxji)or

This means that there is heteroscedasticity (the residual
varies with the size of the values on the x-variables)

There are estimation methods that can get around this
problem (such as 2-stage weighted least squares method)

One example of LPM:
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Eit eksempel pa LPM:
OLS regression of a binary dependent variable on
the independent variable “’years lived in town”

ANOVA tabell Sum of Mean
Squares df Square F Sig.
Regression 3,111 1 3,111 13,648 | ,000(a)
Residual 34,418 151 228
Total 37,529 152
Dependent Variable: Std.
SCHOOLS SHOULD CLOSE B Error t Sig.
(Constant) ,594 ,059 | 10,147 ,000
YEARS LIVED IN TOWN -,008 ,002| -3,694| ,000
The regression looks OK in these tables
Spring 2010 © Erling Berge 2010 211
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w
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= Here the predicted y is
% below 0 for reasonable
A 640 values of x
o
o
= =
O
(72}
0,20 —
R Sq Linear = 0,083
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YEARS LIVED IN WILLIAMSTOWN
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Scatter plot with line of regression. Figure 7.1 Hamilton
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Conclusion: LPM model is wrong

» The example shows that for reasonable values of the x
variable we can get values of the predicted y where

Ely; | X;]1>1 or E[y; | X;] <0,
* For this there is no remedy

» [LPM is for substantial reasons a wrong model

* We need a model where we always will have
0<E[y; | X;]<1

» The logistic function can provide such a model
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The logistic function
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Logistic curves for different 3

0.8

_ 1
Y= T+exp(0.5x)
1

Y= 1+exp(-0.25x)
- 1
Y= 1+exp(-0.1x)
Horizontal line through (0, 1)

T T T
20 40

B determines how rapidly the curve grows
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MODEL (1)

Definitions:

» The probability that person no i shall have the value
1 on the variable y; will be written Pr(y; =1).

* Then Pr(y;#1) =1 - Pr(y;=1)

» The odds that person no 1 shall have the value 1 on
the variable y;, here called O,, is the ratio between
two probabilities

Pr(yizl) p.
O. :1 = = !
=)= 2y Ty,

© Erling Berge 2010
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MODEL (2)

Definitions:

* The LOGIT, L, , for person no 1 (corresponding to
Pr(y;=1)) is the natural logarithm of the odds, O, , that
person no 1 has the value 1 on variable y;, is written:

= In(O;) = In{p/(1-p)}

* The model assumes that L; is a linear function of the
explanatory variables x; ,

e ie.
« L.=B,+ % BJ ji » where j=1,..,K-1, and i=1,..,n
Spring 2010 © Erling Berge 2010
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MODEL (3)

* Let X = (the collection of all x; ), then the
probability of Y, =1 for person no i

Pr(yizl):E[yi|Xi]: 1 _exp(Ly)

1+exp(-L;) ~ l+exp(L)

K-1
where L, =B, + D B, X

j=1

The graph of this relationship is useful for the
interpretation what a change in x means

Spring 2010 © Erling Berge 2010
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MODEL (4)

In the model Y, = E[y; | X;] + ¢; the error is either

« & =1-Ely; | X;] with probability E[y; | X;]
(since Pr(y; = 1) = E[y; | X;]),

or the error is

* g =-E[y; | X;] with probability 1 - E[y; | X;]

* Meaning that the error has a distribution known as the
binomial distribution with

p; = Ely; | Xi]
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Estimation by the ML method
» The method used to estimate the parameters in the
model is Maximum Likelihood

» The ML-method gives us the parameters that
maximize the likelihood of finding just the
observations we have got

e This Likelihood we call £

 The criterion for choosing regression parameters is
that the Likelithood becomes as large as possible
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Maximum Likelihood (1)
» The Likelihood equals the product of the

probability of each observation. For a
dichotomous variable where Pr(Y; =
1)=P, this can be written

L =TT {p" (1-R)""]
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Maximum Likelihood (2)

e It is easier to maximize the likelihood £

if one uses the natural logarithm of L :

In(L)=3{yInP+(1-y;)In(1-P,)}

1=1
 The natural logarithm of L is called the
LogLikelihood, It will be written LL.

* L[ has a central role in logistic regression.
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Maximum Likelihood (3)

» The LogLikelihood £ will always be
negative
« Maximizing L/ is the same as

minimizing the positive
LogLikelihood; i.e. minimizing -£L

* Finding parameter values that

minimizes - ££ can be done only by

’trial and error”, i1.e. using an iterative
procedure

Spring 2010
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Iterative estimation

Coefficients

From Hamilton -2 Log

Tabell 7.1 Iteration Likelihood Constant lived

Initial 0 209,212 -276

Step 1 195,684 ,376 -,034
2 195,269 ,455 -,041
3 195,267 ,460 -,041
4 195,267 ,460 -,041

Note the column titled -2 LogLikelihood

Spring 2010
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Footnotes to the tables
 Step 0: Point of departure is a model with only a
constant and no variables

* Jterative estimation

— Estimation ends at iteration no 4 since the parameter
estimates changed less than 0.001

For the next slide:
» The Wald statistic that SPSS provides equals the

square of the “t” that Hamilton (and STATA)
provides (Wald = t?)
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Logistic model instead of LPM

OLS regression (slide 6 above)

Dependent Variable:

SCHOOLS SHOULD CLOSE B Std. Error t Sig.
(Constant) ,594 ,059 10,147 ,000
YEARS LIVED IN TOWN -,008 ,002 -3,694 ,000

Logistic regression

Dependent:
Schools should close B S.E. | Wald |df| Sig. | Exp(B)
Lived in town -,041| ,012 | 11,399| 1] ,001 ,960
Constant ,460 | ,263 | 3,069 1,080 1,584
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SCHOOLSs

1,00000— dAHDEDOOID OO0 O o o SHOULD CLOSE

O YEARS LIVED IN
WILLIAMSTOWN
Predicted

O probability
YEARS LIVED IN

0,80000 — WILLIAMSTOWN

Fig 7.4 Hamilton

0,60000 —

0,40000 —

The linear model
is entered beside
the logistic

0,20000 —

0,00000 —

0,00 20,00 40,00 60,00 80,00 100,00
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TESTING

Two tests are useful

* (1) The Likelihood ratio test

— This can be used analogous to the F-test
(e.g. comparing two NESTED models)

* (2) Wald test

— The square root of this can be used
analogous to the t-test
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Interpretation (1)

* The difference between the linear model and the
logistic is large in the neighbourhood of 0 and 1

* LPM is easy to interpret: Y, = 3, when x,=0, and
when x; increases with one unit Y, increases with [3,
units

» The logistic model is more difficult to interpret. It is
non-linear both in relation to the odds and the
probability
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ODDS and ODDS RATIOS
* The Logit, L, ( L= Po + Z; Bj x;i ) is defined as the
natural logarithm of the odds
This means that
« odds =0,(Y=1)=exp(L,) =eb
and
* Odds ratio=0i (Y=1| L") / O, (Y=1] L)
— where L;” and L, have different values on only one
variable x;
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Interpretation (2)
* When all x equals 0 then L; = 3, This means that the odds
for y, =1 in this case 1s exp{f3,}

 If all x-variables are kept fixed (they sum up to a constant)
while x, increases with 1, the odds for y, = 1 will be
multiplied by exp{p,}

* This means that it will change with
100(exp{B;} — 1) %

* The probability Pr{y; = 1} will change with a factor affect
by all elements in the logit
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Fotnote:

[ tabellen ovanfor finnvi L =0,460 + -
0,041*LivedInTown

» Her finn vi oddsen for Y=1 for kvart ar ekstra ein bur
1 byen exp{-0,041} = 0,96

» Rekna om til prosentvis endring blir det 100[exp {-
0,041} - 1] =-4% pr ar
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Logistic regression: assumptions

The model is correctly specified
 The logit is linear in its parameters
* All relevant variables are included

* No irrelevant variables are included

x-variables are measured without error

Observations are independent

No perfect multicollinearity

No perfect discrimination

Sufficiently large sample

Spring 2010 © Erling Berge 2010
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Assumptions that cannot be tested

* Model specification
» All relevant variables are included

 x-variables are measured without error
» Observations are independent
Two will be tested automatically.

 If the model can be estimated by SPSS there is
— No perfect multicollinearity and
— No perfect discrimination

Spring 2010 © Erling Berge 2010
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Fotnote:

» Case med stor paverknad kan vere eit
problem

» Kva som er eit stort nok utval er ikkje alltid
klart, det er svaert avhengig av korleis casa
fordeler seg pa 0 og 1 kategoriane. Dersom
den eine vert for liten vil det skape problem
for estimering av partielle verknader

Spring 2010 © Erling Berge 2010
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Assumptions that can be tested
» Model specification

* logit is linear in the parameters
* no irrelevant variables are included
* Sufficiently large sample

» What is “sufficiently large” depends on the number
of different patterns in the sample and how cases are
distributed across these

« Testing implies an assessment of whether
statistical problems leads to departure from
the assumptions
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LOGISTIC REGRESSION
Statistical problems may be due to

* Too small a sample
» High degree of multicollinearity

— Leading to large standard errors (imprecise estimates)

— Multicollinearity is discovered and treated in the same way as
in OLS regression

» High degree of discrimination (or separation)
— Leading to large standard errors (imprecise estimates)
— Will be discovered automatically by SPSS
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Fotnote:
Oppdaging av multikollinearitet

1.Korrelasjonsmatrise mellom x-variablane (ikkje serleg
paliteleg)

2.Korrelasjonsmatrise mellom parametrane (seier ikkje noko
om drsaka til multikollineariteten)

3.Sjekk toleransen gjennom regresjon av kvar x-variabel pa
resten av x-variablane. Finn R,?
(determinasjonskoeffesienten). Lag toleranse (1-R,?)
indikerer eit potensielt problem.

Vi bater pa problemet med meir data, kombinasjon av variablar
eller test av grupper av variablar der eigen effekt ikkje kan

identifiserast. A
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Discrimination in Hamilton table 7.5

Odds for weaker requirements |y = Women Women
1s 44/202 = 0,218 among Strengthof | without | with
women without small children -

water quality | gq]] small
Odds for weaker requirement is | standards hild hild
0/79 = 0 among women with children | children
small children Not 202 79
Odds rate is 0/0,218 = 0 hence |weaker
eXp {bwoman}zo
Tl;js Teans that b,,,,, = minus Weaker 44 0
infinity OK
Spring 2010 © Erling Berge 2010 239

Discrimination/ separation

Problems with discrimination appear when we for a given
x-value get almost perfect prediction of the y-value (nearly
all with a given x-value have the same y-value)

In SPSS it may produce the following message:

Warnings

There is possibly a quasi-complete separation in the data. Either the
maximum likelihood estimates do not exist or some parameter
estimates are infinite.

The NOMREG procedure continues despite the above warning(s).
Subsequent results shown are based on the last iteration. Validity of
the model fit is uncertain.
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Spring 2010

The LikeLihood Ratio test (1)

The ratio between two Likelihoods equals the
difference between two LogLikelihoods

The difference between the LogLikelihood (L£L)
of two nested models, estimated on the same
data, can be used to test which of two models fits
the data best, just like the F-statistic is used in
OLS regression

The test can also be used for singe regression
coefficients (single variables). In small samples it
has better properties than the Wald statistic

© Erling Berge 2010

The LikeLihood Ratio test (2)

The LikeLihood Ratio test statistic

* Y% =-2[£L(modell) - £LL(model2)]

will, if the null hypothesis of no difference between
the two models is correct, be distributed
approximately (for large n) as the chi-square
distribution with number of degrees of freedom
equal to the difference in number of parameters in
the two models (H)

Spring 2010
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Fotnote:

* Hugs kolonnen med -2LogLikelihood i
tabellen frd estimeringa
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Example of a Likelihood Ratio test

Model 1: just constant From
Model 2: constant plus one variable Tab 7.1:
-2 Log
Likelihood
A% = -2[LL(modell) - £LL(model2)] 209,212
= -2LL(modell) + 2L£L(model2) 195,684
Find the value of the ChiSquare and the 195,269
number of degrees of freedom 195,267
e.g.: LogLikelihood (mod1) =209,212/(-2) 195267

LogLikelihood (mod2) = 195,267/(-2)
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The Wald test (1)

» The Wald (or chisquare) test statistic provided by SPSS =
t2 = (b,/ SE(b,))? (where t is the t used by Hamilton) can
be used for testing single parameters similarly to the t-
statistic of the OLS regression

* If the null hypothesis is correct, t will (for large n) in
logistic regression be approximately normally distributed

« If the null hypothesis is correct, the Wald statistic will (for
large n) in logistic regression be approximately chisquare
distributed with df=1
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Fotnote:

[ smé utval vil denne testen vere problematisk.
Ein ber da nytte sannsynsratetesten.
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Excerpt from Hamilton Table 7.2

Iterasjon -2 Log likelihood

0 209,212

1 152,534

2 149,466

3 149,382

4 149,382

5 149,382

Variables B| S.E. Wald | df | Sig. | Exp(B)

Lived -,046 ,015 9,698 1| ,002 955
Educ -,166 ,090 3,404 1| ,065 ,847
Contam 1,208 ,465 6,739 1| ,009 3,347
Hsc 2,173 464 21,9191 1| ,000 8,784
Constant 1,731 1,302 1,768 | 1| ,184 5,649
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Confidence interval for parameter estimates

» Can be constructed based on the fact that the
square root of the Wald statistic approximately
follows a normal distribution with 1 degree of
freedom

* by - t,*SE(by) < By <by +t,*SE(by)
where t, is a value taken from the table of the

normal distribution with level of significance
equal to o
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Can be constructed based on the t-distribution
(1)
 [f a table of the normal distribution is missing one
may use the t-distribution since the t-distribution is
approximately normally distributed for large n-K (e.g.
for n-K > 120)
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Excerpt from Hamilton Table 7.3 (from SPSS)
STATA 12 Prob>t
SPSS B SE. Wald | df | Sig. | Exp(B)
Step1 | lived 047|017 7550 1] 006 954
educ 2206|093 4887 1| 027 814
contam 1,282 481 7,004 1| 008 3,604
hsc 2,418 510 22,508 1 ,000 11,223
female -,052 557 009 1] 926 950
kids -671 566 1,406| 1| 236 511
nodad 226|999 4964 1| 026 108
Constant 2,894| 1,603 3259 1| ,071| 18,060
Spring 2010 © Erling Berge 2010 250
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More from Hamilton Table 7.3

-2 Log
Iteration likelihood Coefficients
Const lived educ | contam hsc female kids nodad
Step0 209,212 | -0,276
Step1 |1 147,028 1,565 | -,027| -,130 ,782 | 1,764 -015| -,365| -1,074
2 141,482 2,538 | -,041| -,187 1,147 | 2,239 -037| -,580| -1,844
3 141,054 2,859 | -,046 | -,204 1,269 | 2,401 -050| -,662| -2,184
4 141,049 2,893 | -,047| -,206 1,282 | 2,418 -052 | -,671| -2,225
5 141,049 2,894 | -,047| -,206 1,282 | 2,418 -052| -,671| -2,226
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Spring 2010

in table 7.2 ?

£L(model in 7.3) = 141,049/(-2)
£L(model in 7.2) = 149,382/(-2)

© Erling Berge 2010

X% = -2[LL(model 7.2) - £LL(model 7.3)]

Find 2, value
Find H
Look up the table of the chisquare distribution

Is the model in table 7.3 better than the model

252
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The model of the probability of observing

y=1 for person 1

exp(L;)

Pr(yi 21): E[yl | X]: 1+eXp(_Li) B 1+CXP(Li)

K-1
where the logit L, =, + Z B; X is a linear function
j=1

of the explanatory variables

It is not easy to interpret the meaning of the 3
coefficients just based on this formula

Spring 2010 © Erling Berge 2010
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The odds ratio

« The odds ratio, O, can be interpreted as the
relative effect of having one variable value
rather than another

c eg ifx,=ttlinL ’and x,; =tin L,

O0=0; (Y=1[ L) O; (Y=1| Ly

= exp[L;” J/ exp[L]
= exp([By]
* Why B, ?

254
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The odds ratio : example I

* The Odds for answering yes =
eb(ﬁ-b1 * Alder+b,*Kvinne+b,*E.utd+b,*Barn i HH

* The odds ratio for answering yes between women and men =

eb0 +b, *Alder+b, *1+by *E.utd+b, *Barn _i HH

_ b
eb0+b1"‘Alder+b2"‘0+b3*E.utd+b4*Barn_i_HH =€

Remember the rules of power exponents
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The odds ratio : example 11

* The Odds for answering yes given one
year of extra education

+h, *Alder +b, *Kvinne+b; *( E.utd+1)+b,*Barn_i HH
e 4

ebO +b, * Alder-+b, *Kvinne+b, *E.utd +b, *Barn_i_ HH

Remember the rules of power exponents
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Example from Hamilton table 7.2

* What is the odds ratio for yes to closing the school from
one year extra education?

* The odds ratio is the ratio of two odds where one odds is
the odds for a person with one year extra education

ebO +b *ArBuddIByen-+b, *(Utdanning-+1)-+b; *UreiningEigEigedom-+b, *MangeHSCmater

ebo +hy* ArBuddIByen-+b, *Utdanning +b, *UreiningEigEigedom-+h, *MangeHSCmgter

b, *(Utdanning+1)
€ b,
—_ — e

ebZ *Utdanning
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Example from Hamilton table 7.2 cont.

* Odds ratio = Exp{b,} = exp(-0,166) = 0,847
* One extra year of education implies that the odds is
reduced with a factor of 0.847

* One may also say that the odds has increased with a
factor of

100(0,847-1)% =-15,3%
* Meaning that it has declined with 15,3%
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Concluding on logistic regression

« If the assumptions are satisfied logistic
regression will provide normally
distributed, unbiased and efficient (minimal
variance) estimates of the parameters
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Regression criticism

* Hamilton Ch 4 p109-123
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Analyses of models are based on
assumptions

* OLS is a simple technique of analysis with very
good theoretical properties. But:

» The good properties are based on certain
assumptions

« If the assumptions do not hold the good properties
evaporates

* Investigating the degree to which the assumptions
hold is the most important part of a regression
analysis
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OLS-REGRESSION: assumptions

« I SPECIFICATION REQUIREMENT
* The model is correctly specified

* II GAUSS-MARKOV REQUIREMENTS
* Ensures that the estimates are “BLUE”

o III NORMALLY DISTRIBUTED ERROR TERM
* Ensures that the tests are valid

Spring 2010 © Erling Berge 2010 262
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Fotnote:

 Teknisk sett kan ein seie at
spesifikasjonskravet er inkludert i dei to forste
Gauss-Markov krava. Men kravet er s viktig
at vi godt kan forsvare a setje det for seg sjolv.
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I  SPECIFICATION REQUIREMENT
» The model is correctly specified if

— The expected value of y, given the values of the
independent variables, is a linear function of the
parameters of the x-variables

— All included x-variables have an impact on the
expected y-value

— No other variable has an impact on expected y-value at
the same time as they correlate with included x-
variables
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Fotnote:

* Ein "linezr funksjon av parametrane” tyder
at mellom kvart +/- finst ein og berre ein
parameter.
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I GAUSS-MARKOV REQUIREMENTS
(1)
(1) x is known, without stochastic variation
(2) Errors have an expected value of 0 for all 1

*E(g)=0 for all 1

Given (1) and (2) €, will be independent of x, for all k

and OLS provides unbiased estimates of 3
(unbiased = forventningsrett)
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Fotnote:

« Nar feilen er uavhengig av x-ane
(ukorrelerte) er modellen teknisk sett rett
spesifisert. Dette tyder at
’Spesifikasjonskravet” ovanfor eigentleg er
overfladig.

» Det er likevel det viktigaste kravet og er
ogsa naert knytt til det teoretiske
utgangspunktet.

Spring 2010 © Erling Berge 2010 267

I  GAUSS-MARKOV REQUIREMENTS (ii)

(3) Errors have a constant variance for all 1
* Var(g)) = o2 for all i

This is called homoscedasticity

(4) Errors are uncorrelated with each other
* Cov(g;, g)=0 foralli#]

1

This 1s called no autocorrelation
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Fotnote:

* (3) Er kravet om homoskedastisitet

* (4) Er kravet om fraver av autokorrelasjon

Spring 2010 © Erling Berge 2010 269

I GAUSS-MARKOV REQUIREMENTS (iii)

Given (3) and (4) in addition to (1) and (2) provides:
+ a. Estimates of standard errors of regression coefficients are
unbiased and

* b. The Gauss-Markov theorem:

OLS estimates have less variance than any other linear
unbiased estimate (including ML estimates)

OLS gives “BLUE”
(Best Linear Unbiased Estimate)
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Fotnote:

* Best = minst varians,

* Unbiased = forventningsrett
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II  GAUSS-MARKOV REQUIREMENTS (iv)

(1) - (4) are called the GAUSS-MARKOYV requirements

* Given (2) - (4) with an additional requirement that
errors are uncorrelated with x-variables:

ecov (X,.€)=0 forallik

The coefficients and standard errors are
consistent (converging in probability to the true
population value as sample size increases)

Spring 2010 © Erling Berge 2010 272

© Erling Berge 2010 136



Ref.: http://www.erlingberge.no/ Spring 2010

Fotnote:

* Var[.] og cov][.] viser til populasjonsverdiane
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Footnote 1:
Unbiased estimators

* Unbiased means that

E[by ] =Py
* In the long run we are bound to find the

population value - B, - if we draw
sufficiently many samples, calculates b, and
average these
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Footnote 2:
Consistent estimators

» An estimator is consistent if we as sample size
(n) grows towards infinity, find that b

approaches 3 and s, [or SE,] approaches o,

* b, 1s a consistent estimator of 3, if we for any
small value of ¢ have

lim,_, [Pr{Ib -BI<c}]=1

n—ao0
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Footnote 3: In BLUE ”Best” means
minimal variance estimator

 Minimal variance or efficient estimator
means that

var(b,) < var(a,) for all estimators a
different from b

* Equivalent:
E[by - B> < E[a, - By for all
estimators a unlike b
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Footnote 4:

Biased estimators

» Even if the requirements ensuring that our
estimates are BLUE one may at times find biased
estimators with less variance such as in

» Ridge Regression

Non-linear estimators

» There may be non-linear estimators that are
unbiased and with less variance than BLUE
estimators
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I  NORMALLY DISTRIBUTED ERROR
TERM

 (5) If all errors are normally distributed with expectation
0 and standard deviation of 62 , that is if

€, ~N(0, 6?) for all i
— Then we can test hypotheses about 3 and ¢, and

— OLS estimates will have less variance than estimates from all
other unbiased estimators

— OLS results are “BUE”
(Best Unbiased Estimate)
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Fotnote:

* (5) Er ikkje nedvendig for at OLS skal vere
”BLUE” (Best Linear Unbiased Estimate)

* Det kan vere ein dramatisk nedgang i
variansen til estimata dersom feilen faktisk
er normalfordelt
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Problems in regression analysis that
cannot be tested

» [f all relevant variables are included
» If x-variables have measurement errors
« If the expected value of the error is 0

This means that we are unable to check if the
correlation between the error term and x-variables
actually is 0

OLS constructs residuals so that cov(x;,,e;)=0

This 1s in reality saying the same as the first point
that we are unable to test if all relevant variables are
included
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Fotnote:

* OLS metoden er konstruert slik at utvals
residualane har eit gjennomsnitt pa 0. Dette
seier ingenting om foresetnaden om at dei
skal ha det 1 populasjonen.

Spring 2010 © Erling Berge 2010 281

Problems in regression analysis that can be
tested (1)

* Non-linear relationships
* Inclusion of an irrelevant variable

» Non-constant variance of the error term
(heteroscedasticity)

 Autocorrelation for the error term
 Correlations among error terms

» Non-normal error terms

» Multicollinearity
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Consequences of problems (Hamilton, p113)

Unwanted properties of estimates

Requirem Problem Biased Biased estimate of | Invalid High
estimate of b | SE, t&F-tests var[b]
ent
Specification Non-linear relationship X X X
Excluded relevant variable X X X
Included irrelevant variable 0 0 0 X
Gauss-Markov | X with measurement error X X X
Heteroscedasticity 0 X X X
Autocorrelation 0 X X X
X correlated with € X X X
Normal € not normally distributed 0 0 X X
distribution
...no Multicollinearity 0 0 0 X
requirement
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* Hog var[b] er det same som ineffektive
estimatorar
* Ineffektivitet er studert berre for
forventningsrette estimatorar
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Problems in regression analysis that can
be discovered (2)

 Outliers (extreme y-values)

* Influence (cases with large influence:
unusual combinations of y and x-values)

» Leverage (potential for influence)
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Tools for discovering problems

e Studies of

— One-variable distributions (frequency
distributions and histogram)

— Two-variable co-variation (correlation and
scatter plot)

— Residual (distribution and covariation with
predicted values)
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Correlation and scatter plot

Data from 122 countries ENERGY MEAN
CONSUMP ANNUAL FERTILIZER
TION PER | POPULATION USE PER CRUDE
PERSON GROWTH HECTARE BIRTH RATE
ENERGY Pearson Correlation
CONSUMPTION PER 1 -,505 ,533 -,689
PERSON
N 125 122 125 122
MEAN ANNUAL .
POPULATION GROWTH Pearson Correlation -,505 1 -,469 ,829
N 122 125 125 125
FERTILIZER USE PER Pearson Correlation
HECTARE ,533 -,469 1 -,589
N 125 125 128 125
CRUDE BIRTH RATE Pearson Correlation -,689 829 -589 1
N 122 125 125 125
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Fotnote:
[ ]

Spring 2010

Korrelasjonar gir forteikn og styrke 1
LINEZARE samband

Korrelasjonasmatriser kan ggyme problem

som t.d.

Kurvelinearitet

Utliggarar

Heteroskedastisitet

Fordelingsform

© Erling Berge 2010
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Spring 2010

Correlation and scatter plot

ENERGY ...

FERTILIZER USE ... MEAN ANNUAL ...

CRUDE BIRTH ...
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R o

ENERGY CONSUMPTION PER PERSON  FERTILIZER USE PER HECTARE
MEAN ANNUAL POPULATION GROWTH
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CRUDE BIRTH RATE

289
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Fotnote:
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For vi lagar oss ein modell som tar vare pa
dei ikkje lineare samanhengane er det lite
vi kan gjere med problem som
heteroskedastisitet, ikkje-normalitet, etc
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e Qutliers

Spring 2010

© Erling Berge 2010

Heteroscedasticity

(non—constant variance of error term) can arise from:

» An important diagnostic tool is a plot of the residual
against predicted value (Y)

» Measurement error (e.g. y more accurate the larger x is)

« If g contains an important variable that varies with both
x and y (specification error)

 Specification error is the same as the wrong model and
may cause heteroscedasticity

Example: Hamilton table 3.2

Dependent Variable: Unstandardized
Summer 1981 Water Use Coefficients
B Std. Error t Sig.

(Constant) 242,220 206,864 1,171| ,242
Income in Thousands 20,967 3,464 6,053 | ,000
Summer 1980 Water Use ,492 ,026 18,671 ,000
Education in Years -41,866 13,220 -3,167 | ,002
head of house retired? 189,184 95,021 1,991 | ,047
# of People Resident 1981 248,197 28,725 8,041 ,000
Increase in # of People 96,454 80,519 1,198 | ,232

Spring 2010

© Erling Berge 2010
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Fotnote:

* Vi har tidlegare sett pa regresjonen av
vassforbruket 1981 etter sparekampanjen.
Dersom vi tar vare pa residualane fra denne
regresjonen og plottar residualen mot
predikert verdi av Y finn vi
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Fotnote:

* Spreiinga til residualen aukar med aukande
predikert y

* Predikert Y er her ein indeks som viser til
hoge gjennomsnittlege x-verdiar

» Nar spreiinga av residualen varierer
systematisk med verdiane pd x-variablane
har vi heteroskedastisitet

Spring 2010 © Erling Berge 2010
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Footnote for the previous figure

» There is heteroscedasticity if the variation of the
residual (variation around a typical value) varies
systematically with the value of one or more x-
variables

* The figure shows that the variation of the residual
increases with increasing predicted y: ¥

 Predicted y (V) is in this case an index showing
high average x-values

* When the variation of the residual varies
systematically with the values of the x-variables
like this, we conclude with heteroscedasticity

Spring 2010 © Erling Berge 2010
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10000,00000—

Box-plot of the

residual shows 7500,00000
*Heavy tails
483
. 5000,00000 — *489
*Many outliers * 496

*491
494 %

86,481

*Weakly positively 5060000 Pt
skewed distribution ﬁg%w—

0,00000

Will any of the ﬁ?%%?T

» Heteroskedastisitet forer til ineffektive og
skeive estimat av standardfeila til
regresjonskoeffisientane. Ikkje-normale feil
vil ogsd auke ineffektiviteten og gjere at F-
og t-testane ikkje blir truverdige. Vi kan 1
grunnen ikkje tru pa dei p-verdiane vi ser 1
tabell 3.2.
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outliers affect the -2500.00000 112
regression? 435
-5000,00000 —{
Unstandardilzed Residual
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The distribution seen from another angle
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Band-regression

* Homoscedasticity means that the median (and the
average) of the absolute value of the residual, i.e.:
median{le;]l}, should be about the same for all
values of the predicted y;

 If we find that the median of Ie,l for given
predicted values of y, changes systematically with
the value of predicted y; (¥,) it indicates
heteroscedasticity

 Such analyses can easily be done in SPSS
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Absolute value of e; (Based on regression in table 3.2 in Hamilton)
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Fotnote:

» Denne figuren lagar vi relativt enkelt 1 SPSS
» Forst lagrar vi residualen og predikert y fré regresjonen.

 Sé reknar vi om residualen til ein ny variabel med
absoluttverdien gjennom ”Compute” under ~Transform”.

» Sa deler vi opp predikert y 1 band gjennom prosedyren
”Visual bander” under ”Transform”

 Deretter nyttar vi "Boxplot” under ”Graphs” der vi
spesifiserer absoluttverdi av residual som variabel og
bandvariabelen som kategoriakse
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Band regression in SPSS

 Start by saving the residual and predicted y from the
regression

« Compute a new variable by taking the absolute value of
the residual (Use “compute” under the “transform” menu)

» Then partition the predicted y into bands by using the
procedure ”Visual bander” under the ”Transform” menu

* Then use ”Box plot” under "Graphs” where the absolute
value of the residual is specified as variable and the band
variable as category axis
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Footnote to Eikemo and Clausen 2007

» Page 121 describes White’s test of Heteroscedasticity
¢ The description is wrong

 They say to replace y with e? in the regression on all the x
variables

* That is not sufficient.

» The x-variables have to be replaced by all unique cross
products of x with x (including x?)

* Unique elements of the Kronecker product of x with x
(where x is the vector of x-variables)
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Autocorrelation (1)

 Correlation among variable values on the same
variable across different cases

(e.g. between g, and €, ;)

» Autocorrelation leads to larger variance and biased
estimates of the standard error - similar to
heteroscedasticity

* In a simple random sample from a population
autocorrelation is improbable
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Autocorrelation (2)

» Autocorrelation is the result of a wrongly specified
model. A variable is missing

» Typically it is found in time series and
geographically ordered cases

 Tests (e.g. Durbin-Watson) is based on the sorting of
the cases. Hence:

A hypothesis about autocorrelation needs to specify
the sorting order of the cases
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Durbin-Watson test (1)

Z(ei — & )2

d = i=2

Zn:eiz
i=1

Should not be used for autoregressive models, i.e.
models where the y-variable also is an x-variable, see
table 3.2
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Durbin-Watson test (2)

* The sampling distribution of the d-statistic is
known and tabled as d; and d; (table A4.4 in
Hamilton), the number of degrees of freedom is
based on n and K-1

* Test rule:
— Reject if d<d;
— Do not reject if d>d,
— If d; <d <dj the test is inconclusive

* d=2 means uncorrelated residuals
» Positive autocorrelation results in d<2
» Negative autocorrelation results in d>2

Spring 2010 © Erling Berge 2010

309

Daily water use, average pr month

Example: 5,50

5,00+

4,50 —

4,00 —

AVERAGE DAILY WATER USE

3,50—

3,00 —

SO S ANNONWEERRENOIDDR Y TREPRVOO© 2 s > s s
Soco oo LoD L L LY TN OLWANATNOWA
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INDEX NUMBER 1-137
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Ordinary OLS-regression where the
case 1s month
Dependent Variable: AVERAGE DAILY Unstandardized
WATER USE Coefficients t Sig.
B Std. Error
(Constant) 3,828 ,101 38,035 ,000
AVERAGE MONTHLY
TEMPERATURE ,013 ,002 7,574 ,000
PRECIPITATION IN INCHES -,047 ,021 -2,234 ,027
CONSERVATION CAMPAIGN
DUMMY -,247 ,113 -2,176 ,031
Predictors: (Constant), CONSERVATION CAMPAIGN DUMMY, AVERAGE
MONTHLY TEMPERATURE, PRECIPITATION IN INCHES
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Test of autocorrelation
Dependent
Variable:
AVERAGE
Std. Error of
DAILY Adjusted R the | Durbin-
WATER USE R R Square Square Estimate Watson
1 ,572(a) ,327 312 ,36045 ,535

Predictors: (Constant), CONSERVATION CAMPAIGN DUMMY, AVERAGE
MONTHLY TEMPERATURE, PRECIPITATION IN INCHES

N=137,K-1=3
Find limits for rejection / acceptance of the null hypothesis of

no autocorrelation with level of significance 0,05
Tip: Look up table A4.4 in Hamilton, p355
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Fotnote:

«d =1.6logd,=1,74

Spring 2010 © Erling Berge 2010 313

Autocorrelation coefficient

m-th order autocorrelation coefficient

T-m _ _
Z (et _e)<et+m _e)
r = t=1 - —
Z(et —e)
t=1
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Fotnote:

* Durbin-Watson testen er relatert til
autokorrelasjonskoeffisienten av forste
orden (m=1)

+ All utrekning av testar er basert pd data slik
dei faktisk er sortert pa data fila. Testen vil
derfor gi meining dersom casa er sortert
substansielt slik hypotesen om
autorkorrelasjon foreset.
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Residual ”Daily water use”, month
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0,50000 —
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INDEX NUMBER 1-137
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Smoothing with 3 points

. Slidi
1ding average e* _ et_l T et + et+1
. =

* “Hanning” N e

* Sliding median

e, =median{e,_.e.e,,}
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Residual, smoothing once

0,75000 —

T A/\MM N,
I, ™

Mean MA(RES_1,3,3)

-0,25000 —

-0,50000 —
-0,75000
UL L U L A L L L L L L L L L L L L L L L L
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
SO P AN PP ORI G S RN SO ORNR NP S AN DO ORI PIDD 222 INDND D
Sodcoooo oo oo oo oo oo oL TRNoOwWNRON T O =~
oooooooooooooooooooooooooooooooooooooooooo
oooooooooooo
INDEX NUMBER 1-137
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Residual, smoothing twice

A,

VWW -

- 135,00
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36,00
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24,00
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12,00
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Residual, smoothing five times

A

aWaN
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Consequences of autocorrelation

Tests of hypotheses and confidence intervals are
unreliable. Regressions may nevertheless provide a
good description of the sample. Parameters are
unbiased

Special programs can estimate standard errors
consistently

Include in the model variables affecting neighbouring
cases

Use techniques developed for time series analysis
(e.g.: analyse the difference between two points in
time, Ay)
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Concluding on Autocorrelation

Correlation among variable values on the same variable
across different cases (e.g. between ¢; and €; )

Autocorrelation leads to larger variance and biased estimates
of the standard error - similar to heteroscedasticity

Autocorrelation is the result of a wrongly specified model

Typically it is found in time series and geographically ordered
cases. In a simple random sample from a population
autocorrelation is improbable

Tests (e.g. Durbin-Watson) is based on the sorting of the
cases. Hence: hypotheses about autocorrelation need to
specify the sorting order of the cases
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Analyses of models are based on
assumptions

« OLS is a simple technique of analysis with
very good theoretical properties. But

* The good properties are based on certain
assumptions

« |If the assumptions do not hold the good
properties evaporates

* Investigating the degree to which the
assumptions hold is the most important part of
the analysis
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OLS-REGRESSION: assumptions

| SPECIFICATION REQUIREMENT
» The model is correctly specified
* I GAUSS-MARKOV REQUIREMENTS

— (1) x is known, without stochastic variation

— (2) Errors have an expected value of O for all i
— (3) Errors have a constant variance for all i

— (4) Errors are uncorrelated with each other

(Ensures that the estimates are “BLUE")
* [l NORMALLY DISTRIBUTED ERROR TERM
* Ensures that the tests are valid
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Fotnote:

» Teknisk sett kan ein seie at
spesifikasjonskravet er inkludert i dei to farste
Gauss-Markov krava. Men kravet er sa viktig
at vi godt kan forsvare a setje det for seg sjalv.
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Problems in regression analysis that
cannot be tested

« |f all relevant variables are included
* |f x-variables have measurement errors
* If the expected value of the erroris 0

* (This means that we are unable to check if
the correlation between the error term and
x-variables actually is 0 and is actually the
same as the first point that we are unable to
test if the model is correctly specified)
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Fotnote:

« OLS metoden er konstruert slik at utvals
residualane har eit gjennomsnitt pa 0. Dette
seier ingenting om fgresetnaden om at dei
skal ha det i populasjonen.
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The most important problems in regression
analysis that can be tested

* Non-linear relationships

* Non-constant error of the error term
(heteroscedasticity)

» Autocorrelation for the error term
* Non-normal error terms
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More on Heteroscedasticity

* |s present if the variance of the error term varies with the size

of x-values

» Predicted y is an indicator of the size of x-values (hence

scatter plot of residual against predicted y)

» Heteroscedasticity (non-constant variance of error term) can

arise from

— Measurement error (e.g. y more accurate the larger x is)

— Outliers

— The wrong functional form

— If g contain an important variable that varies with one or more x and

y. The error term g; is not independent of the x-es. Hence the Gauss-
Markov requirements 1 and 2 cannot be correct.
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Indicators of heteroscedasticity

* Inspection of the scatter plot of residual
against predicted value of y

» Band regression of the scatter plot

An interesting option here is:

 Locally weighted / "sliding” regression on the
central part of the sample
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"Sliding” 6000,00]
adapted line
by means of
locally

weighted o
oLs

regression

The
procedure is
called
LOESS (see
next slide)

5000,00— o

4000,00

3000,00—

2000,00—

absoluttverdiResidual

1000,00—

0,00

T T T T T
0,00000 2000,00000 4000,00000 6000,00000 8000,00000

Unstandardized Predicted Value

Spring 2010 © Erling Berge 2010 331

A footnote: SPSS explains

Fit Lines

* In afit line, the data points are fitted to a line that usually does not pass
through all the data points. The fit line represents the trend of the data.
Some fit lines are regression based. Others are based on iterative
weighted least squares.

» Fit lines apply to scatter plots. You can create fit lines for all of the data
values on a chart or for categories, depending on what you select when
you create the fit line.

Loess

» Draws a fit line using iterative weighted least squares. At least 13 data
points are needed. This method fits a specified percentage of the data
points, with the default being 50%. In addition to changing the percentage,
you can select a specific kernel function. The default kernel (probability
function) works well for most data.
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Non-normal residuals

* Imply that t- and F-tests cannot be used

+ Since OLS estimates of parameters are easily
affected by outliers, heavy tails in the distribution of
the residual will indicate large variation in estimates
from sample to sample

* We can test the assumption of normally distributed
error term by inspecting the distribution of the
residual, e.g. by inspecting
— Histogram, box plot, or quantile-normal plot
— There are also more formal tests (but not very useful)

based on skewness and kurtosis
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Diagram of the residual shows:

Heavy tails, many outliers, and weakly positively skewed
distribution

BOX PLOT HISTOGRAM

5000,00000 *489

2
g
1

1

486 5481
4768477

Frequency

—479E
482

IS
S
1

,00000  0,00000  2000,00000 4
Unstandardized Residual
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-2500,00000 | 152115
20
A3 Mean = 2,5046631E-13
Std. Dev. =
844,18532555
-5000,00000 — N = 496
T T T T
T -4000,00000 0000
Unstandardized Residual
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» Heteroskedastisitet fgrer til ineffektive og
skeive estimat av standardfeila til
regresjonskoeffisientane. Ikkje-normale feil vil
ogsa auke ineffektiviteten og gjere at F- og t-
testane ikkje blir truverdige. Vi kan i grunnen
ikkje tru pa dei p-verdiane vi ser i tabell 3.2.

335

Skewed distribution of the residual (1)

0,40 —

0,30 —

0,20 —

NormalNullEin

In the normal
distribution the ratio
between IQR and

the standard o0
deviation is 1.35 :

IQR/ SE = 1.35

<|IQR>

St.dev.=
L]

IQR/1.35 = SE
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Fotnote:

(Kap 1:8)

I normalfordelinga finn vi at forholdstalet IQR/St.Dev (SE) = ca 1.35 slik at SE =

ca IQR/1.35

Dersom fordelinga av residualen er symmetrisk kan vi samanlikne SE, med
IQR/1.35. Dersom

—SE, > IQR/1.35 er halane tynger enn i normalfordelinga
—SE, = IQR/1.35 er halane tilneerma lik normalfordelinga
—SE, < IQR/1.35 er halane lettare enn i normalfordelinga

Mellom 0 og 1 standardavvik finn vi 34,1345 % av observasjonane i ei
normalfordeling. Dvs. mellom -1 og +1 ligg mao 68,269 % av observasjonane.
Mellom -0.674 og +0.674 finn vi 50% av observasjonane dvs |IQR er lik 1.348
standardavvik

Mellom -1,96 og +1,96 finn vi 95% av alle observasjonane

Nokre statistiske prosedyrar krev normalfordeling, mange fungerer betre
dersom vi har normalfordelte variablar.
Spring 2010 © Erling Berge 2010 337

Skewed distribution of the residual (2)

See Ch 1:8

Since the average of the residuals (e;) always equals 0, the
distribution will be skewed if the median is unequal to 0

It is known that for the normal distribution the standard deviation
(or the standard error) equals approximately IQR/1.35

If the distribution of the residual is symmetric we can compare
SE, to IQR/1.35. If

— SE, > IQR/1.35 the tails are heavier than the normal distribution

— SE, = IQR/1.35 the tails are approximately equal to the normal
distribution

— SE, <1QR/1.35 the tails are lighter than the normal distribution
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Q t.I Normal Q-Q Plot of Unstandardized Residual
uan I e 10 000
Normal pIOt Case no is based on case sequence: so that
H 78007 no 94= case no 101, nr 85= case no 92 and

Of reSId ual no 80= case no 87

5000 Q
from P Rac

. > o
regression g -«
[}

in table 3.2 § |
in Hamilton

-2 500

Tsd
-5000 T T T T T
-3 000 -2 000 -1000 0 1000 2 000 300
Expected Normal Value
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Options if non-normality is found

» Test out if the right function has been used
» Test out if some important variable has been
excluded

— If the model cannot be improved substantially, we may try
transforming the dependent variable to symmetry

» Test out if lack of normality is caused by outliers or
influential cases

— If there are outliers, transforming of the variable where the
case is outlier may help
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Influence (1)

» A case (or observation) has influence if the
regression result changes when the case is
excluded

« Some cases have unusually large influence
because of
— Unusually large y-value (outliers)
— Unusually large value on an x-variable
— Unusual combinations of variable values

Spring 2010 © Erling Berge 2010
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Influence (2)

» We can see if a case has influence by
comparing regressions with and without a
particular case. One may for example

* Inspect the difference between b, and b,
where case no i has been excluded in the
estimation of the last coefficient

* This difference measured relative to the
standard error of b, is called DFBETAS;,

Spring 2010 © Erling Berge 2010
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DFBETAS,,

b, —b,,

DFBETAS, = <~ —©
Se(i)

RSS,

Se() Is the standard deviation of the residual when
case no i has been exclude from the analysis RSS, is
Residual Sum of Squares from the regression of x,
on all other x-variables
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Fotnote:

« Nar DFBETAS,, > 0 vil case nr i trekkje b, opp
« Nar DFBETAS,, < 0 vil case nr i trekkje b, ned

« Til sterre IDFBETAS, | il storre paverknad pa
b, har i

Spring 2010 © Erling Berge 2010 344

© Erling Berge 2010

Spring 2010

172



Ref.: http://www.erlingberge.no/

DFBETAS,, :

by

° o
@ ©
506900 % ;6 4
O,
9

0o2ad
5 o
% &

outlier ~.

One case may make a lot of difference
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What is a large DFBETAS?

+ DFBETAS, is calculated for every independent variable for
every case. We do not want to inspect all values for it

» Three criteria for finding large values we need to inspect are
— External scaling. IDFBETAS, | > 2/ SQRT(n)

— Internal scaling. Look for severe outliers in the box plot of
DFBETAS,, :

DFBETAS; < Q;-3IQR
Q; + 3IQR < DFBETAS,
— Gap in the distribution of DFBETAS,,
* None of the DFBETAS,, needs to be problematic
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5,00000— DFBETAS for income in the
134 P i i
«13 regression in Hamilton, table 3.2
4,00000 —|
127
*
3,00000 —
2,00000 —
149 134
% *
87 92 127
1,00000— *
376*1 72
133
74 87 149
F Bl 3375302
0,00000 —
244%451
X 1o 71
144
51 4£
3445516
-1,00000 — 71
T T
DFBETA income Standardized DFBETA income
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Sequence in the data set and case no is not the same.
Case no is fixed. Variable values.
Sequence |Case |water81 \water80 (water7 |educat |retire |peop8|cpeop
no nr 9 1
91 98 1500 1300| 1500 16 0 2 0
92 99 3500 6500| 5100 14 0 6 0
93 100 1000 1000| 2700 12 1 1 0
94 101 3800 12700 | 4800 20 0 5 0
95 102 4100 4500| 2600 20 0 5 0
96 103 4200 5600 | 5400 16 0 5 -1
97 104 2400 2700 800 16 0 6 0
98 105 1600 2300 | 2200 14 0 4 0
99 107 2300 2300| 3100 16 0 4 -2
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Leverage plot for
water use and Look at the
II']COI’:ﬂG (See Y: residual Vassforbruk sommar 1981 quantile-normal
Hamilton p69-72 plot above
on partial
regression plots) X: residual Inntekt i tusen
6000,00000 — 02057 134
133 © o127 i
= 4000,00000 —
3 529 0338086109 74 o'
& 2000,00000 — 1
g 0,00000 —
° 255
§ -2000,00000 — 376° AN -
g 10 R Sq Linear = 0,07
-4000,00000 — o
-6000,00000 —
—20,0‘0000 O,OOIOOO 20,0:)000 40,02)000 60,0:)000 80,01)0(
Unstandardized Residual
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Fotnote:

* | fglgje Hamilton vil dei 2 casa 134 og 127 endre
regresjonskoeffisienten for inntekt dramatisk.
Dersom vi ekskluderer desse to casa vil den minke
fra 20,97 til 12,46 eller med om lag 40%. 2/496 deler
av data (0,4%) kan altsa endre ein koeffisient sveert
mykje.

» Stundom er det sma klynger av case som har
paverknad. DFBETAS vil ikkje lett kunne oppdaga
dette. Men i slike leverage plott er det ofte lettare a
sja det.
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Consequences of case with large influence

If we discover cases with large influence we should not
remove them from the analysis unless they contain
serious errors

Take a careful look at influential cases, maybe there are
measurement errors

When influential cases are outliers their influence can
be reduced by transformation

Use robust regression not so easily affected as OLS
regression

If no errors are found report results both with and
without one or two of the most influential cases
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Potential influence: leverage

* The potential for influence of a case from a particular
combination of x-values is measured by the hat
statistic h;

* h,varies from 1/n to 1. It has an average of K/n (K =
# parameters)

» SPSS reports the centred h,
—i.e. (h;—K/n), we may call this for h¢,

— We must compute the normal h; = h¢, + K/n to judge the
size by the criteria supplied by Hamilton
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What is a large value of leverage?

» As for DFBETAS different criteria can be
suggested. They all depend on the sample
size n
—If h, > 2K/n (or h¢ > K/n) we find the ca 5% largest

h, ; alternatively
+ If max (h;,) < 0.2 there is no problem
+ If 0.2 < max (h;) £ 0.5 there is some risk for a problem
+ If 0.5 < max (h;) probably there is a problem
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Centred leverage 0,12000
(h¢,) from the
regression in 159
table 3.2 in 010000+ .
Hamilton *134
0,08000 - *101
Max av he, er
0.102 7
0,06000 "7
Or max of h; P
=0.102 + 323
K/n =0.102 004000 239kacr
+7/496 = 3050497
164172
0.116<0.2 235
0,02000 -
|
1
0,00000 - —l—
Centered Le\llerage Value
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The difference between influence and leverage
leverage —
case
° c(go g; :2‘“ o —
col@d |
% & °
_ leverage
Figur 4.14 i Hamilton case S a
High Leverage, Low Influence High Leverage, High Influence
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The leverage statistic is found in many other
case statistics

— Variance of the i-th T=<2M—h
residual Var[e'] Se 1 h']

— Standardized residual

e.
7 =———
. : i
(*ZRESID in SPSS) NI

— Studentized residual t e
(*SRESID in SPSS) i
Se(i) \ 1- hi
— And remember that the
standard deviation of the
residual is Se = \/RSS /(n - K)
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Fotnote:

* Den studentifiserte residualen vil teste ei hypotese om
effekten av ein dummy-koda variabel (I) som har 1=1
for case nri og O for alle andre case, mao om case i
har ein effekt pa modellen og derfor bgr reknast som
eit paverknadsrikt case. Kvar t verdi er t-fordelt med df
= n-K-1. Men nar vi testar alle casa samtidig kjem vi
opp i problemet med multiple komparasjonar i det vi
gjer n testar. Basert pa Bonferroni ulikheta kan ein
teste n case samtidig med eit gitt niva (alfa) pa testen
der som p-verdien til max(t)) er mindre enn (alfa)/n.
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Total influence: Cook’s D,

« Cook’s distance D; o zh
measure influence 'K (1 —h )
on the model as a

where z. is the standardized
whole, not on a 1

specific coefficient residual
as DFBETAS;, and h, is the hat statistic
(leverage)
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What is a large D, ?

» One might want to take a look at all

—-D;>1 or

— D, > 4/n these are about the 5% largest D,
» Even if a case has low D, it may still be the

case that it affects the size of single
coefficients (it has a large DFBETAS,))
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Cook’s distance D,
from the regression
in table 3.2 in
Hamilton

Also see table 4.4
(p133) in Hamilton

Spring 2010

0,30000—

0,20000 —

0,10000 —

0,00000 —

101
*

134
*

127
*

64

T
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What can be done with outliers and cases with

Summarizing

large influence? We can

* Investigate if data are erroneous. If data are wrong
the case can be removed from the analysis

* Investigate if transformation to symmetry helps
* Report two equations: with and without cases with

unreasonably large influence

* Get more data

Spring 2010
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Multicollinearity

Means very high intercorrelations among x-
variables

Check if parameter estimates are correlated

Check if tolerance (the part of the variation of x that
is not shared with other variables) is less than say
0.1. If so there may be a problem

VIF = variance inflation factor = 1/tolerance

If multicollinearity is caused by squaring of
variables or interaction terms it should not be seen
as problematic
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Tolerance

The amount of variation in a variable x, unique to that
variable is called the tolerance of the variable

Let R?, be the coefficient of determination in the
regression of x, on all the rest of the x-variables. The
other x-variables explain the proportion R?, of the
variation in x,.

Then 1- R?, is the unique variation:

— Tolerance = 1- R%,

Perfect multicollinearity means that

— R?,=1 and tolerance =0

Low values of tolerance make regression results less
precise (larger standard errors)
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Variance Inflation Factor (VIF)

« 1/tolerance = 1/(1-R?,) = VIF

» The standard error of the regression coefficient b,

can be written

S Se _\W Se

SE, =2 - _
* JRss, J(1-R?)TSS, JTSS,

» Other things being equal lower tolerance (larger
VIF) for x, will give higher standard error for b,
[SE increase with a factor equal to square root of
VIF]
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Indicators of multicollinearity

» The best indicator is tolerance or VIF (both are
based on R?, )

» Other indicators are
— Correlation among single variables (not reliable)

— Inclusion/ exclusion of single variables give large
changes in the effect of other variables

— Unexpected signs on the effects of some variable

— Standardized regression coefficients larger than1 or
less than -1

— Correlation among parameter estimates
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Tolerance and VIF from regression in table 3.2 in Hamilton
Dependent
Variable: Summer Unstandardized
1981 Water Use Coefficients t Sig. Collinearity Statistics
B Std. Error Tolerance VIF

(Constant) 242,220 206,864 1,171 242
Summer 1980 492 026 18,671 ,000 675 1,482
Water Use
Income in 20,967 3,464 6,053 ,000 712 1,404
Thousands
Education in -41,866 13,220 -3,167 ,002 873 1,145
Years
head of house 189,184 95,021 1,991 047 776 1,289
retired?
# of People
Resident, 1981 248,197 28,725 8,641 ,000 643 1,555
Increase in # of 96,454 80,519 1,198 232 957 1,045
People
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What is low tolerance?

Square root of VIF

10

When R?, > 0,9 .
tolerance is < 0,1 - /
and VIF > 10

Factor of

multiplication for the
standard error is the
square root of VIF 2 —
(ca 3.2 for R3,=0,9) 1 S L 4

Standard Error is Multiplied by
[4,] [o2]

Figure 4.15 Effect of multicollinearity on standard errors (simplified).
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When is multicollinearity a problem?

* Itis not a problem if the reason is curvilinearity or
interaction terms in the model. But in testing we need to
take account of the fact that if VIF is high parameter
estimates are imprecise (high standard errors). They
are tested as a group by the F-test

 |f the reason is that two variables measure the same
concept one of them should be dropped, or they can be
combined in an index

* Itis a problem if we need estimates of the separate
effects of two highly correlated variables (if a test of
their joint effect is not sufficient)
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Summarizing (1)

* When errors are independent and identically normally
distributed OLS estimates are as good or better than
other possible estimates

+ But the assumptions are rarely satisfied completely,
we have to test the degree to which they are satisfied

* Many problems can be corrected if we learn about
them

* Check early on if curvilinearity, outliers or
heteroscedasticity are problems ( for example by use
of scatter plots)
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Summarizing (2)

« Do more exact investigations using

residual/predicted Y plots and leverage plots

— Curvilinearity (leverage plot, residual vs predicted Y
plot)

— Heteroscedasticity (leverage plot, [absolute value of]
residual against predicted Y plot)

— Non-normal residuals (quantile-normal plot, box-plot
with analysis of median and IQR/1.35

— Influence (check DFBETAS and Cook’s D)
— When we do not find serious problems we can have
more confidence in our conclusions
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Fitting Curves
Robust Regression

« Hamilton Ch 5 p145-173
« Hamilton Ch 6 p183-212
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Ch 5 Fitting Curves

» A correctly specified model require that the function
linking x-variables and y-variable is true to what really
exist: Is the relationship linear?

» Data can be inspected by means of band regression
or smoothing

« The theory of causal impact can specify a non-linear
relationship

* For phenomena that cannot be represented by a line
we shall present some alternatives

— Curvilinear regression
— Non-linear regression
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Band regression

« Can be used to explore how the relationship
among the variables actually appears

* |If we can see a non-linear underlying trend of
the data we must through transformations or
use of curves find a form for the function better
representing the relationship
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Pollution at different depths in
sediments outside the coast of NH

Pollution measured
by the ratio
chromium/iron at
different depths of
various sediment
samples

Is the relationship
linear?

Spring 2010

15,004

©
=)
S

CR/FE RATIO
o
o

3,00

10,00 15,00
DEPTH IN CM

© Erling Berge 2010

375

Fotnote:

« Krom kom fra eit garveri som vart stengt sist pa
60 talet. Ureininga i ulike djup gir oss
tidsforlgpet til garveriverksemda.

Spring 2010
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CR/FE RATIO

Medians of 5 bands: rate of chromium/iron
in sediments outside the coast of NH

15,00

12,00

o
=)
3

1

— T

6,00

3,00

0,00 >

T T T T T
DEPTH IN CM (Banded)

The relationship is obviously non-linear
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Transformed variables

Using transformed variables makes a regression
curvilinear. The transformation makes the original curve
relationship into a linear relationship

This is the most important reason for a transformation

At the same time transformations may rectify several other
types of statistical problems (outliers, heteroscedasticity,
non-normal errors)

Procedure:

— Choose an appropriate transformation and make new transformed variables
— Do a standard regression analysis with the transformed variables

— To interpret the results one usually will have to transform back to the original
measurement scale
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Fotnote:

Vi introduserte transformasjonar i kap 1 for a
lage symmetri i fordelingane. (s17-23)

Vi brukte transformasjonar i kap 2 for a
redusere problem med heteroskedastisitet.
(s53-58)

Vi sjekkar effekten av transformasjon ved hjelp
av histogram, box-plott, symmetriplott eller
kvantil normal plott.

Vi sjekkar normalitet t.d. ved IQR/1.35 mot s,

Repeter potensstigen for transformasjon.
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The linear model

K1
Yi ::Bo +Zﬁjxji T &
j=1

In the linear model we can transform both x- and y-
variables without any consequences for the
properties of OLS estimates of the parameters

OLS is a valid method as long as the model is linear
in the parameters
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Curvilinear Models

 Practically speaking this is regression with
transformed variables
» We shall take a look at how different
transformations provide different forms for the
variable relations
— Semi-logarithmic curves
— Log-Log curves
— Log-reciprocal curves
— Polynomials (2 and 3 order)

381
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Fotnote:

» Sja side 150 for reknereglar for logaritmer.
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Semilog curves Fig 5.2 in Hamilton

”q“z‘h 6 | 3 p T T T T s T T T Ty T T T T
y=5+2In(x) In(y)=10+0.2x

y=5-2In(x) In(y)=10-0.2x
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8D

In(y)=5+01.8In(x)
In(y)=5+1In(x)

Log-log curves Fig 5.3 in Hamilton

d In(y)=5+0.2In(x)
In(y)=5-0.2In(x) m
70}, B a 5 s b ® 1 15 3
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Log-reciprocal curves Fig 5.4 in Hamilton

\

|

2 4 6

8 1

In(y)=0.1+0.2/x The horizontal lines give the value of
In(y)=0.5-1.5/x

Horizontal line through (0, 1.105) y when x grows towards infinity: the
Horizontal line through (0. 1.649) 2Symptotefory
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Second order polynomials Fig 5.5 in Hamilton

y=150+8x-0.2x"2
y=150-8x+0.2x"2
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Third order polynomials Fig 5.6 in Hamilton

5]
o
&

y=400+8x-0.7x"2+0.01x"3
y=50-8x+0.7x"2-0.01x"3
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Fotnote:

* Merk, tredjegradspolynom kan vere vanskeleg
a nytte av reint tekniske grunnar. Det kan skape
utliggjarar med innverknad pa regresjonen og
det vil introdusere eit sterkt element av
multikollinearitet.
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Choice of transformation

 Scatter plot or theory may provide advice

* Otherwise: transformation to symmetry
gives the best option

* The regression reported in table 3.2 in
Hamilton proved to be problematic

» Regression with transformed variables
can reduce the problems
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Choice of transformation in table 3.2 in Hamilton

Y = Water use 1981 Y*=Y03 provides approximate symmetry

)(1 = Income X;*= X,93 provides approximate symmetry

X2 = Water use 1980 X,*= X,0-3 provides approximate symmetry

X3 = Education Transformations are inappropriate

X4 = Pensioner Transformations do not work for dummies

X5 = # people in 1981 X5*=In(X5) provides approximate symmetry

XG = Change in # people Xe = X5 — X, (= # people in 1980)

X7 = Relative change in #people X7 =1n (Xs/Xo)
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Regression with transformed varia
Tab 5.2 in Hamilton

bles

Dependent Variable: Std.
(Wateruse81)°-3 B Err t Sig.
(Constant) 1,856 ,385 4,822 ,000
Income?®-3 516 ,130 3,976 ,000
Wateruse800-3 ,626 ,029| 21,508 ,000
Education in Years -,036 ,016 -2,257 ,024
Retired? ,101 , 119 ,852 ,395
Ln(# of people81) , 715 ,110 6,469 ,000
Ln(people81/people80) ,916 ,263 3,485 ,001
Spring 2010 © Erling Berge 2010 391

Table 3.2 (Hamilton p74)

Dependent Variable: Std.

Summer 1981 Water Use B Error t Sig. Beta
(Constant) 242220 | 206.864 1171 242
Income in Thousands 20.967 3.464 6.053 | .000 .184
Summer 1980 Water Use 492 .026| 18.671| .000 .584
Education in Years -41.866| 13.220| -3.167| .002| | -.087
Head of house retired? 189.184 | 95.021 1.991| .047|| .058
# of People Resident, 1981 248197 | 28.725 8.641| .000 277
Increase in # of People 96.454 | 80.519 1.198| 232 || .031

How do we interpret the coefficient of “Increase in # of People” ?

What leads to less water use after the crisis?
Spring 2010 © Erling Berge 2010
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Fotnote:

| Hamilton sine tabellar er det ei kolonne som gir gjennomsnittet av
variablane. Den ma vi i SPSS leggje til sjglve om vi gnskjer den.

Samanlikna med 2-variabel eksempelet ovanfor ser vi
Determinasjonskoeffisienten har auka fra 0.6138 til 0.6773

Koeffisientane for inntekt og vassforbruk1980 har ikkje endra seg
substansielt

Koeffisientane utanom konstanten og auke i tal personar er
signifikant ulik O og store nok til at dei har substansiell interesse

Konstantleddet ma vi alltid ha med
Kva skal vi gjere med ” increasein#orecple” ¢ (droppe eller ikkje)

Gitt farkriseniva i vassforbruk vil etterkriseforbruk minke der
inntekta gar ned, utdanninga gar opp og hovudpersonen i hushaldet
ikkje er pensjonist.
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Unstandardized Residual

Residual against predicted Y

_| Based on the regression in table 3.2 in Hamilton

2500.00000 —|

©0.00000 —|

T T T T
©0.00000 2000.00000 ~ 4000.00000 600000000  8000.00000

Unstandardized Predicted Value

4000.00000

6.00000 —

4.00000 —| P

2.00000 —

zed Residual

Unstandar

-2,00000 —|

-4.00000 —|

-6.00000 —|

Based on the regression in table 5.2 in Hamilton

6.00000 8.00000 10.00000 12,00000 14.00000
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Fotnote:

* Predikert Y er her ein indeks som viser til hage
gjennomsnittlege x-verdiar.

» Nar spreiinga av residualen varierer systematisk med
verdiane pa x-variablane har vi heteroskedastisitet.

dverst:
» Spreiinga til residualen aukar med aukande predikert y.
Nederst:

» Spreiinga til residualen er om lag den same for alle
verdiar av predikert y

Spring 2010 © Erling Berge 2010 395

Other consequences of the
transformations

« Two cases with large influence on the
coefficient for income (large DFBTAS) do not
have such influence (fig 4.11 and 5.9)

« One case with large influence on the coefficient
for water use in 1980 do not have that large
influence (fig 4.12 and 5.10)

« Transformation to symmetrical distributions will
often solve many problems — but not always

And it creates a new one: interpretation
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Interpretation
* The model estimate now looks like this

y*? =1.856+0.516X"" +0.626X%* —0.036X,

+0.101x,, +0.715In(x;, ) +0.916 In(=3)

» The interpretation of the coefficients are not socl)

straightforward any more. For example: the
measurement units of the parameters have been
changed

« The simplest way of interpreting is to use conditional
effect plots

Spring 2010 © Erling Berge 2010 397

Fotnote:

 Tolking: Kvar einings auke i In(#personar) gir
ein auke pa 0.72 einingar i anslaget pa =.3-
potensen av vassforbruket om alt anna er likt.
* Tungvint!
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Conditional effect plot

« Should be used to study the relationship
between the dependent variable and one x-
variable with the rest of the x-variables given
fixed values

 Typically we are interested in the relationship
x-y when the other variables are given values
that

— Maximizes y
— Are averages values of of the x-variables
— Minimizes y
Spring 2010 © Erling Berge 2010 399

Example based on the regression in table 3.2 in Hamilton

Dependent Variable: Summer Unstandardized
1981 Water Use Coefficients
B Std. Error t Sig.

(Constant) 242,220 206,864 1,171 ,242
Summer 1980 Water Use 492 ,026| 18,671 ,000
Income in Thousands 20,967 3,464 6,053 ,000
Education in Years -41,866| 13,220 -3,167| ,002
head of house retired? 189,184 95,021 1,991 ,047
# of People Resident, 1981 248,197 28,725| 8,641 ,000
Increase in # of People 96,454 80,519 | 1,198| 232
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To produce conditional effect plots it is useful to
have a table of minimum, maximum and
average variable values

N Minimum | Maximum Mean
Summer 1981 water use 496 100 10100 | 2298,39
Summer 1980 water use 496 200 12700| 2732,06
Income in thousands 496 2 100 23,08
Education in years 496 6 20 14,00
Head of household retired? 496 0 1 ,29
# of people resident, 1981 496 1 10 3,07
Relative increase in # of people 496 -3 3 -,04
# People living in 1980 496 1 10 3,11

Spring 2010

© Erling Berge 2010

401

Spring 2010

The equation

© Erling Berge 2010

« Estimated Y = 242,22 + 0,492X, + 20,967X, -
41,866X; + 189,184X, + 248,197 X5 + 96,454 X,

« Maximizing the effect of X; on Y require maximum of
Xy, X4, Xg , Xg @and minimum of X,

» Average values of the effect of X, on Y is obtained by
inserting average values of X, , X5, X, , X5, Xg

* Minimizing the effect of X; on Y require minimum of
X, Xy, Xy, Xg, Xg @and maximum of X,

402
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6000

4000

2000

2000 4000 6000

-4000

Y =242.22 + 0.492X + 20.967x10 - 41.866%7 + 189.184x1 + 248.197x5 + 96.454x1
Y =242.22 + 0.492X + 20.967x1 - 41.866x18 + 189.184x0 + 248.197x1 + 96.454x0
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When x is dummy coded

« Estimated Y = 242,22 + 0,492X, + 20,967X, -
41,866X; + 189,184X, + 248,197X; + 96,454 X,

« Estimated Y = constant + 189,184X,
— X, can take the values of 0 or 1

Y = constant + 189,184

Y = constant >
X,=0 X=1
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Water usage according to income
controlled for the effect of other variables

Fig 5.11 Hamilton

0 Relationship when other variables

have average values

1600

03=1 856+0.626(2732)%3-0.036(14)+0.101(0.294)+0.715In(3.07)+0.916(In(3.07)-In(3.11))+0.516(x)°>

Which plots might be of interest?

» The relationship between water usage and income
controlled for the effect of other variables
— Those minimizing water usage
— Those maximizing water usage
— Average values

y“ﬂ%&%ﬂ%W%%WWMMQW7muwma(mmw%(M%
2 =(1.856+0.626(12700)"0.036(6}+0.101(1)#0.715in(10)+0.916(n(10}n({ ) +0.516(¢")
3 1

3 =(1.856+0.626(2732)"0.036(14)+0.101(0.29)40.715In(3.07)+0.916(n(3.07)(3.1 1)+ 516(¢/™)

Spring 2010 © Erling Berge 2010 406

© Erling Berge 2010

Spring 2010

203



Ref.: http://www.erlingberge.no/ Spring 2010

Comparing three types of usage

14000
12000 v\Maximum
10000
8000
6000
100 Average
m/%;mm\
0 10 20 30 40 50 €]

Relationship between water usage and income Fig 5.12 in Hamilton
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The role of the constant in the plot

« The only difference between the three curves is the
constant (konst)

— In the maximum curve: (konst) = 14.046
— In the minimum curve: (konst) = 4.204
— In the average curve: (konst) = 8.507

y;” =(konst)+0.516x;"

» The effect of income varies with the value of (konst)

* When we transform the dependent variable all
relationships become interaction effects
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Comparing effects

* For some relationships the standardized
regression coefficient can be used to compare
effects, but it is sensitive for biased estimates
of the standard error

« A more general method is to compare
conditional effect plots where the scaling of
the y-axis is kept constant

Spring 2010 © Erling Berge 2010 409
income Pensioner
# people
1980 water use

education Relative change in # people

e

Fig 5.13 Hamilton
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Non-linear models

+ If we do not have a model that is linear in the
parameters other techniques than OLS are needed
to estimate the parameters

* One may find two types of arguments for such
models

— Theory about the causal mechanism may say so
— Inspection of the data may point towards one particular
type of model

* We shall take a look at

— Exponential models
— Logistic models
— Gompertz models
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Exponential growth and decay
Fig 5.14 in Hamilton

s
y=25exp(-0.03x)
y=4exp(0.02x)

© Erling Berge 2010
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Negative exponential curves Fig 5.15 in Hamilton

y=10(1-exp(-0.07x))

2 y=10(1-exp(-0.02x))
1 Horizontal line through (0, 10)
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To-term exponential curves Fig 5.16 in Hamilton

04]

0.3

0.2

014

T T T T T T T
20 40 60 80

Y=(5opsr)(eXp(-0.04x)-exp(-0.05x))

y=(5oprr)(€@xp(-0.11x)-exp(-0.05x))
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 When x declines towards

Logistic models

« The logistic function is o

written

1+ vy exp (—Bx)

« As x grows towards

infinity y will approach o~ * Logistic models are
appropriate for many

minus infinity y will phenomena L
approach 0 — Growth of biological
populations

— Scattering of rumours
— Distribution of illnesses

Spring 2010 © Erling Berge 2010
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Logistic curves Fig 5.17 in Hamilton

Y=a

20
15+

104

L I SR

%
Y=+ 10exp(0.12%)
%

Y= 1+50exp(-0.12x)
25
Y= 1+10exp(0.06%)
Horizontal line through (0, 25)

A

* y determines where growth starts
* B determines how fast the growth is
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Logistic probability model

* Ifitis determined that a=y=1y will vary between 0
and 1 as x goes from minus infinity to plus infinity

* Logistic curves can then be used to model
probabilities

+ &

1

1
i = 1+ exp(—BXi )
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Gompertz curves

» Gompertz curves are sigmoid curves like the logistic,
but growth increase and growth reduction occur at
different rates. Hence they are not symmetric

_'Ye_BX

y=0e" +¢

« Parameters a, y, and B have the same interpretation
as in the logistic model
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Gompertz curves Fig 5.18 Hamilton

20

; y=25exp(-exp(-0.12x))
3 y=25exp(-20exp(-0.12x))
1 y=25exp(-20exp(-0.06x))
Horizontal line through (0, 25)
4 ‘ 20 ‘ 40 ‘ 60 ‘ 80 ‘ 14
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Estimation of non-linear models

e The criterion of fit is still minimum RSS

* It is uncommon to find analytical expressions
for the parameters. One has to guess at a
start value and go through several iterations to
find which parameter value will give minimum
RSS

« Good starting values are as a rule necessary,
and everything from theory to inspection of
data are used to find them
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Per cent women with at least 1 child according to the

woman’s age and year of birth (England og Wales)

1920 1930 1940| 1945| 1950| 1955| 1960 | 1965

15 0 0 0 0 0 0 0 0

20 7 9 13 17 19 18 13 11
25 39 48 59 60 53 45 39 -

30 67 75 82 82 75 68 - -

35 76 83 87 88 83 - - -

40 78 86 89 90 - - - -

45 - 86 89 - - - - -
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Estimating Gompertz-models for cohorts (1)

80,00

60,00

40,00+

20,00

% FEMALE COHORT WITH

O >=1CHILD
WOMEN'S AGE

®) Predicted Values
WOMEN'S AGE

1920 cohort, observed and
estimated valugs:

Y= 79.8exp(-461.2exp(-0.26x))

Y= per cent with at least 1 child

X=age
0,00
T T T T T T
15,00 20,00 25,00 30,00 35,00 40,00
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Estimating Gompertz-models for cohorts (2)

®) Predicted Values
100,00 WOMEN'S AGE

500000000000
o

80,00 o o
:oooOOOO
o0

60,00 [e]

° 1920 and{1945 cohorts,

40,00 ° estimated values

o Y= 79.8exp(-461.2exp(-0.26x))
° o Y= 90.4exp(-468.1exp(-0.28x))

20,00

o Y= per cent with at least 1 child

° —
000d ©000000680° X= age

T T T T T
10,00 20,00 30,00 40,00 50,00
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Model estimation and fit

* To evaluate a theoretically developed model

 To predict y within or outside the observed range
of variation for x

» Substantial or comparative interpretation of the
parameters of the model

— On cohorts that are not finished with their births (thus
predicting outside the observed range of x)

— We can use the model to compare parameter values
of different cohorts
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Parameter interpretation
Table 5.6 Hamilton

Cohort |a = upper limit y=7? B = growth speed
1920 79.8 461.2 0.26

1930 86.5 538.0 0.27

1940 89.1 942.0 0.31

1945 90.4 468.1 0.28

1950 87.5 144 .9 0.23

1955 88.9 60.3 0.18
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Fotnote:

 Alfa parameteren gir oss den @gvre asymptoten
for predikert y, dvs den maksimale
prosentdelen av ein kohort kvinner som far
minst eitt barn. Beta parameteren seier noko
om kor raskt kohorten far barna sine.
Gammaparameteren har ikkje noka kjent
substansiell tolking.
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The process of entry into first marriage

Gudmund Hernes

American Sociological Review, 1972, Vol 37(April): 173-182

178
1004 % married
90,
80
201 Figure 1
WHITE FEMALE 1920-24
&0 Observed
_____ Calculated
50
40 ;
Predicted by a non-
30 homogenous diffusion model
20
10
ol Age
15 17 19 21 23 25 27 23 EL a3 as 37
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Birth rates in Sunndal, Meréaker, Verran, and

Rana 1968-71

EEEEERENERN

¥ v 5 v ¥ 4 F

Furr LT Fanniliistikana far furt, | b taocrMar i lommame.
b \\ Swnkal, Kertier., Yorzan 48 b (. 31 for 13E-T]

o Gharama (e,
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Estimated with a
Hadwiger function

Ref.: Berge,
Erling. 1981. The
Social Ecology of
Human Fertility in
Norway 1970.
Ph.D.
Dissertation.
Boston: Boston
University.
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Conclusions of chapter 5 (1)

» Data analysis often starts with linear models. They are
the simplest.

» Theory or exploratory data analysis (band regression,
smoothing) can tell us if curvilinear or non-linear
models are needed

« Transformation of variables give curvilinear
regression. This can counteract several problems:

— Curvilinear relationships
— Case with large influence
— Non-normal errors

— Heteroscedasticity
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Conclusions of chapter 5 (2)

* Non-linear regression use iterative procedures
to find parameter estimates

» The procedures need initial values and are
often sensitive for the initial values

» The interpretation of the parameters may be
difficult. Graphs showing the relationship for
different parameter values will provide
valuable help for the interpretation
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Ch 6 Robust Regression

* Has been developed to work well in situations where
OLS breaks down. Where the OLS assumptions are
satisfied robust regression are not as good as OLS,
but not by very much

* Even if robust regression is better suited for those
who do not want to put much effort into testing the
assumptions, it is so far difficult to use

* Robust regression has focused on residuals with
heavy tails (many cases with high influence on the
regression)
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Fotnote:

» Oversikten her skal hjelpe oss til a skjgne
konsekvensane av utliggjarar og case med hagg
leverage, og vi skal sja at vi kan gjere noko
med det om ngdvendig.
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AGE-ADJUSTED MORTALITY/100K

Figure 6.1
Hamilton

Spring 2010

Regression of mortality on air pollution
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Fotnote:

» Determinasjonskoeffesienten for regresjonen er pa
0.02 (2%). Modellen er ikkje god. Den er paverka av
fleire utliggjarar. Skal vi utelate utliggjarane?
Utliggjarane nedst til hagre viser seg a vere byar i
California. Det bgr gi oss mistanke om utelatne
variablar. Skal vi ga pa jakt etter den utelatne
variabelen? | kva grad vil eksklusjon av utliggjarar
paverke resultatet? | kva grad gnskjer vi a finne eit
sterkt samband mellom mortalitet og ureining?

» Subjektive avgjerder aukar sjansen for bias i
konklusjonane. Eit alternativ er robust regresjon.
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Figure 6.2 800,00 ° o
Hamilton
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Fotnote:
« OLS minimerer RSS %e?. RR minimerer ein
vekta sum av residualane Zw.e?
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Robust regression and SPSS

» SPSS do not have a particular routine that performs
robust regression

* It can possibly be done within the Generalized linear
models procedure <but | have not tested it>

* It can be done by weighted OLS regression, but then
it is required that we make the weight functions and
go through the iterations one by one including
computation of weights every time

» This procedure will be outlined below

Spring 2010 © Erling Berge 2010 437

ROBUST AND RESISTANT

« RESISTANT methods are not affected by small
errors or changes in the sample data

« ROBUST methods are not affected by small
deviations from the assumptions of the model

* Most resistant estimators are also robust in relation
to the assumption about normally distributed
residuals

* OLS is neither ROBUST nor RESISTANT

Spring 2010 © Erling Berge 2010 438
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Fotnote:

1.Robuste estimatorar bar vere konsistente og
rimeleg effektive nar modellen er rett

2.Dei bgr i liten grad la seg influere av sma avvik
fra rett modell og

3.lkkje bli drastisk paverka av store avvik
(fra Huber (1981) side 189 i Hamilton)

* OLS metoden taper i effektivitet (minste
varians) nar vi har "tunge” halar i fordelinga av
residualen.
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Outliers is a problem for OLS

Outliers affect the estimates of

« Parameters

« Standard errors (standard deviation of parameters)
» Coefficient of determination

» Test statistics

* And many other statistics

Robust regression tries to protect against this
by giving less weight to such cases,
not by excluding them

Spring 2010 © Erling Berge 2010 440
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Protection against NON-NORMALE
residuals

Robust methods can help when

» the tails in the distribution of the residuals are
heavy, i.e. when it is too many outliers
compared to the normal distribution

« Unusual X-values have leverage and may
cause problems

But for other causes of non-normality
robust methods will not help

Spring 2010 © Erling Berge 2010 441

Estimation methods for robust regression

* M-estimation (maximum likelihood) minimizes a
weighted sum of the residuals. This can be
approximated by the weighted least squares
method (WLS)

» R-estimation (based on rank) minimizes a sum
where a weighted rank is included. The method is
more difficult to use than M-estimation

 L-estimation (based on quantiles) uses linear
functions of the sample order statistics (quantiles)
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IRLS-
lterated Reweighted Least Squares

M-estimation by means of IRLS needs

1.
2.

3.

4.

Start values from OLS. Save the residuals
Use OLS residuals to find weights. Larger
residuals gives less weight

Find new parameter values and residuals with
WLS

Go to step 2 and find new weights from the new
residuals, go on to step 3 and 4, until changes in
the parameters become small

Iteration: to repeat a sequence of operations

Spring 2010
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IRLS

IRLS is in theory equivalent to M-estimation
To use the method we need to compute
Scaled residuals, u; , and a

Weight function, w, ,that gives least weight to

the largest residuals

Spring 2010
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Scaling of residuals |

* Scaled residual u; U =

— s is the scale factor and e; residual S

» The scale factor in OLS is the estimate of RSS
the standard error of the residual: nb! s, S, =
i Vn-K

1S not resistant

» A resistant alternative is based on MAD,
"median absolute deviation"

MAD = median | e, — median (e, )|

Spring 2010 © Erling Berge 2010 445

Scaling of residuals |l

MAD = median | e, —median (e, )|
The scale factor (standard error of the distribution)
Using a resistant estimate will be
* s=MAD/0.6745 = 1.483MAD
and the scaled residual
* u,=[e;/s]=(0.6745%¢,)/MAD
In a normal distribution s= MAD/ 0.6745 will estimate

the standard error correctly like s,
In case of non-normal errors s= MAD/ 0.6745 will be better.
This is a resistant estimate, s, is not resistant

Spring 2010 © Erling Berge 2010 446
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Weight functions |

* Properties is measured in relation to OLS on
normally distributed errors.

» The method should be “almost as good” as
OLS on normally distributed errors and much
better when the errors are non-normal

» Properties are determined by a “calibration
constant” (c in the formulas)

Spring 2010 © Erling Berge 2010 447

Weight functions I

* OLS-weights: w; = 1 for all i

* Huber-weights: weights down when the scaled
residual is larger than c, c=1,345 gives 95% of the
efficiency of OLS on normally distributed errors

* Tukey’s bi-weighted estimates get 95% of the
efficiency of OLS on normally distributed errors by
gradually weighting down scaled errors until |u;| ¢ =
4.685 and by dropping cases where the residual is
larger

Spring 2010 © Erling Berge 2010 448
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Huber-weights

W =1V|u. |<c

C
U.

Y = for alle
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Tukey weights

2

2
W, = 1—(ﬂ) Viu,|<c
C

W, =0V]|u,|>cC

Y = for alle

» Tukey weighting in IRLS is sensitive for start values of the
parameters (one may end up at local minima)
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Standard errors and tests in IRLS

« The WLS program cannot estimate standard
errors and test statistics correctly by IRLS

« A procedure that works is described by
Hamilton on page 198-199
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Fotnote:

 Dersom modellen er feil, kva er det vi
estimerer? 3 = lim E[b] nar n gar mot uendeleg.
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Use of Robust Estimation

* If OLS and Robust estimates are different it means
that outliers have influence on the OLS results making
them unreliable. Results cannot be trusted

* Robust predicted values will better portray the bulk of
the data

* Robust residuals will be better at discovering which
cases are unusual

* Weights from the robust regression will show which
cases are outliers

* OLS and RR can support each other
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Fotnote:

* Men RR vernar ikkje mot alle problem. Dersom
samanhengen er ikkje lineaere vil ikkje robust
estimering av ein linezer modell gje meining.
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Fig 6.9 Hamilton: OLS and RR on untransformed
data
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regressed on
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Spring 2010 © Erling Berge 2010 455

Fotnote:

* RR vil heller ikkje verne mot hag leverage.
Dersom hgg leverage gar saman med
uvanlege y-verdiar kan caset ta over styringa
med regresjonen.
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Mortality
regressed
on air
pollution

Spring 2010

AGE-ADJUSTED MORTALITY/100K

Fig 6.10 Hamilton: OLS and RR on untransformed

data when two outliers are removed
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Fotnote:

» Nar vi utelet to case med hag leverage klarer
RR seg betre enn OLS.
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RR do not protect against leverage

* RR with M-estimation protects against unusual y-values
(outliers) but not necessarily against unusual x-values
(leverage)

 Efforts to test and diagnose are still needed
(heteroscedasticity is still a problem for IRLS)

+ Studies of the data and transformation to symmetry will
reduce the risk of problems appearing

* No method is “safe” if it is used without forethought and
diagnostic studies of data
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Robust Multippel Regresjon

RELATIVE HC POLLUTION POTENTIAL (natural log)
AVG. YEARLY PRECIP. INCHES

AVG. JANUARY TEMPERATURE, F

MEDIAN EDUCATION OF POP 25+

% NON-WHITE (square root)
POPULATION PER HOUSEHOLD

% 65 AND OVER

% SOUND HOUSING UNITS

PEOPLE PER SQUARE MILE (natural log)
AVG. JULY TEMPERATURE, F

% WHITE COLLAR EMPLOYMENT

% FAMILIES WITH INCOME<$3000 (negative reciprocal root)
AVG RELATIVE HUMIDITY, %
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Fotnote:

» Mogeleg forklaringsvariablar for mortaliteten.

Spring 2010 © Erling Berge 2010 461
Multiple OLS regression with transformed variables:

effect of transformation
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OLS with backward elimination gives

Dependent Variable: B Std. t Sig.
AGE-ADJUSTED MORTALITY/100K Error

(Constant) 986,261 | 82,674| 11,929| ,000
LN_hc_pollution 17,469 4,636 3,768 | ,000
AVG. YEARLY PRECIP. INCHES 2,352 ,640 3,677 | ,001
AVG. JANUARY TEMPERATURE, F -2,132 504 | -4,228| ,000
MEDIAN EDUCATION OF POP 25+ -17,958 6,204 | -2,895| ,005
SQRT _pct_non_white 27,335 4,398 | 6,215| ,000

» Robust regression gives predicted y:

o Y= 1001.8+17.77x,+2.32X,-2.11X5-19.1%,+26.2xs;

Spring 2010 © Erling Berge 2010
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Fotnote:

 AGE-ADJUSTED MORTALITY/100K means age-
adjusted mortality per 100000 population.
* LN_hc_pollution = Ln of hydrocarbon pollution
potential, determined as a product of emitted volume

of pollutant per square kilometre times a dispersion

factor (see note 2 to ch 6 in Hamilton)

* Because backward elimination is used the p-values
are misleadingly low. (See chapter 3)

* We can use the Bonferroni inequality to correct for

this: p-values multiplied with number of variables

tested gives an upper bound for the level of

significance

Spring 2010 © Erling Berge 2010
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Multiple OLS regression with transformed variables
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Le\{erage plot of h.
residual from
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Four estimates of the relationship
mortality — air pollution

Effect of air pollution
OLS |Robust | * Note that in RR the

i variable |7.97 |19.46 bivariate regression

Dl 747 1 comes pretty close to the
5 variables |17.47 |17.77 result of the multivariate

regression
* In the five-variable model there are new cases with
influence on the line of regression

» Removing the 5 cases that have the highest
leverage parameter (h.) do not give substantial

changes in the coefficients
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Robust Regression vs
Bounded Influence Regression

* Robust Regression protect against the effect
of outliers (unusual y-values) if these do not
go together with unusual x-values

» Bounded Influence Regression is designed to
protect against influence from unusual
combinations of x-values
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Bl - Bounded Influence Regression

* Bl-methods are made to limit the influence of
high leverage cases (large h, = high leverage)

» The simplest way of doing this is to modify the
Huber-weights or Tukey-weights in the IRLS
procedure for RR (robust regression) with a
factor based on the leverage statistic
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Bounded influence: modification of weights

» Expand the weight function with a weight based on the
leverage statistic h,

e wH =1 if h<cH

« wH = (ch/ h) if h, > c"

« cHis often set to the 90% percentile in the distribution
of h;

« Then the IRSL weight becomes w, w". where w; is
either the Tukey- or Huber-weight that changes from
iteration to iteration while w. is constant
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Bounded influence as a diagnostic tool

« Estimation of standard errors and test statistics
becomes even more complicated than for the
M-estimators mentioned above

» We can use Bl estimates as a descriptive tool
to check up on other estimates

* One (somewhat) extreme example: PCB
pollution in river mouths in 1984 and 1985
(Hamilton table 6.4)
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TOTAL PCBS 1984 (PPB)

Spring 2010

Fig 6.15 and 6.16 Hamilton
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Fotnote:

1)Y-verdien skil seg ikkje ut, det er x-verdien som
er uvanleg. Leverage observatoren er pa 0,997.
Verken OLS eller Robust M-estimering
oppdagar dette

2)Med Bl-metoden vert Boston Harbor oppdaga
og vekta ned
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OLS and Bl
estimates with
transformed
variables give
about the same

Fig 6.17 Hamilton

7,00

6,00

5,00

—OLS

Bl linja

result

4,00

InPCBS1985

3,00

2,00

1,00 .
R Sq Linear =0,878

/7
0004 o

T T T
0,00 2,00 4,00 6,00 8,00 10,00
InPCBS1984

Spring 2010 © Erling Berge 2010 473

Fotnote:

» Dersom vi transformerer variablane vil ikkje
OLS og Bl regresjonen skilje seg fra kvarandre
vesentleg.

« | staden for & giennomfgre ein Bl estimering
kan ein i fgrste runde av M-estimeringa droppe
alle case med Cook’s D > 1

 Boston Harbor med ein D=6117 ville da bli
ekskludert.
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Conclusions

* When data have many outliers robust methods will have better
properties than OLS

— They are more effective and give more accurate confidence intervals and
tests of significance

* Robust regression can be used as a diagnostic tool

— If OLS and RR agree we can have more confidence in the OLS
results

— If they disagree we will
* Know that a problem exist

* Have a model that fits the data better and identifies the
outliers better

* Robust methods does not protect against problems that are due to
curvilinear or non-linear models, heteroscedasticity, and
autocorrelation
Spring 2010 © Erling Berge 2010 475

Logistic regression |l

* Hamilton Ch 7 p217-242
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Definitions |

» The probability that person no i shall have the value 1
on the variable Y; will be written Pr(Y; =1).

« Then Pr(Y;#1)=1-Pr(Y=1)

* The odds that person no i shall have the value 1 on
the variable Y,, here called O, is the ratio between two

probabilities
Pr(y, =1 :
O, (yi :1): ( ) -_F
l—Pr(yi =1) 1-p,
Definitions II
« The LOGIT , L, , for person no i

(corresponding to Pr(Y,=1)) is the natural
logarithm of the odds, O, , that person no i has
the value 1 on variable Y, . This is written:

L; = In(O)) = In{p/(1-p;)}
« The model assumes that L, is a linear function
of the explanatory variables x; ,

* j.e.:

L =B, + ZJ- Bj X;i , where j=1,..,K-1, and i=1,..,n

Spring 2010
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Logistic regression: assumptions

* The model is correctly specified

» The logit is linear in its parameters
« All relevant variables are included
* No irrelevant variables are included

x-variables are measured without error
Observations are independent

No perfect multicollinearity

No perfect discrimination

Sufficiently large sample

Spring 2010 © Erling Berge 2010 479

Fotnote:

» Cases with large influence may be a problem.
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Assumptions that cannot be tested

» Model specification
* All relevant variables are included

 x-variables are measured without error
* Observations are independent

Two will be tested automatically.

If the model can be estimated there is

* No perfect multicollinearity and

» No perfect discrimination
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LOGISTIC REGRESSION
Statistical problems may be due to

» Too small a sample

» High degree of multicollinearity
— Leading to large standard errors (imprecise estimates)

— Multicollinearity is discovered and treated in the same
way as in OLS regression

» High degree of discrimination (or separation)
— Leading to large standard errors (imprecise estimates)
— Will be discovered automatically by SPSS
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Fotnote:

* Discovering multicollinearity
1.Correlations among x-variables (not very reliable)

2.Correlations among parameters (do not say anything
about the cause of multicollinearity)

3.Check tolerance by regressing every x-variable on the
rest of the x-variables. Find R,2 (the coefficient of
determination). Low tolerance (1-R,?) will indicate a
potential problem.

4.We can repair the problem with more data, combining
variables or testing groups of variables where the
impact of single variables cannot be identified.
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Assumptions that can be tested

* Model specification
— logit is linear in the parameters
— no irrelevant variables are included

» Sufficiently large sample

— What constitutes a sufficiently large sample is not always
clear.

— It depends on how the cases are distributed between 0 and
1 categories. If one of these is too small there will be
problems estimating partial effects.

— It also depends on the number of different patterns in the
sample and how cases are distributed across these
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Sample size in logistic regression

Large sample properties

» The good properties of ML estimates of binary
logistic regression models are large sample
properties that obtain as sample size goes
towards infinity.

« What happens when you have too small a
sample is largely unknown

» Long (1997) puts 100 cases as an absolute
lower bound
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Calculation of lower bounds

* Alower bound of 100 must be adjust according to number of
variables in the model and the distribution of cases on the
dependent variable.

* Peduzzi et al. (1996) suggest:

» Let p be the smallest of the proportions of negative or positive
cases in the population and k the number of covariates (the
number of independent variables), then the minimum number of
cases to include is:

* N=10k/p

* If the resulting number is less than 100 you should increase it to
100

* Or you may say that the maximum number of variables you can
include in the model will be

. k=N*p/10
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LOGISTIC REGRESSION: TESTING (1)

» Testing implies an assessment of whether statistical
problems leads to departure from the assumptions

Two tests are useful

* (1) The Likelihood ratio test statistic:
— Can be used analogous to the F-test

. (2) Wald test

— The square root of this can be used analogous to
the t-test but it follows a normal distribution
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Logistic Regression in SPSS |

Case Processing Summary

Unweighted Cases @ N Percent
Selected Cases Included in Analysis 153 100.0
Missing Cases 0 .0
Total 153 100.0
Unselected Cases 0 .0
Total 153 100.0

a. If weight is in effect, see classification table for the total
number of cases.

Dependent Variable Encoding

Original Value Internal Value
OPEN 0
CLOSE 1
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Logistic Regression in SPSS lla

Iteration History®b:¢

-2 Log Coefficients
Iteration likelihood Constant
Step 1 209.212 -.275
0 2 209.212 -.276
3 209.212 -.276

a. Constant is included in the model.
b. Initial -2 Log Likelihood: 209.212

C. Estimation terminated at iteration number 3 because
parameter estimates changed by less than .001.
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Logistic Regression in SPSS lIb

Classification Table*?

Predicted
SCHOOLS SHOULD
CLOSE Percentage
Observed OPEN CLOSE Correct
Step0 SCHOOLS SHOULD OPEN 87 0 100.0
CLOSE CLOSE 66 0 0
Overall Percentage 56.9
a. Constant is included in the model.
b. The cut value is .500
Variables in the Equation
B | sSE__ | wad | df | sig. | ExpB) |
[ Step0 Constant | -276 | 163 | 2.864 | 1] 091 759 |
Variables not in the Equation
Score df Sig.
Step 0  Variables lived 12.683 1 .000
Overall Statistics 12.683 1 .000
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Logistic Regression in SPSS llla

Iteration History2b.c.d

-2 Log Coefficients
Iteration likelihood Constant lived
Step 1 195.684 .376 -.034
1 2 195.269 455 -.041
3 195.267 460 -.041
4 195.267 460 -.041

a. Method: Enter
b. Constant is included in the model.
C. Initial -2 Log Likelihood: 209.212

d. Estimation terminated at iteration number 4 because
parameter estimates changed by less than .001.
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Logistic Regression in SPSS llIb

Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step1  Step 13.944 1 .000
Block 13.944 1 .000
Model 13.944 1 .000

Model Summary

-2 Log Cox & Snell Nagelkerke
Step likelihood R Square R Square
1 195.2672 .087 17

a. Estimation terminated at iteration number 4 because
parameter estimates changed by less than .001.
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Logistic Regression in SPSS llic

Classification Table?

Predicted
SCHOOLS SHOULD
CLOSE Percentage
Observed OPEN CLOSE Correct
Step1  SCHOOLS SHOULD OPEN 59 28 67.8
CLOSE CLOSE 29 37 56.1
Overall Percentage 62.7
a. The cut value is .500
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step lived -.041 .012 11.399 1 .001 .960
1 Constant 460 .263 3.069 1 .080 1.584
a. Variable(s) entered on step 1: lived.
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Fotnote:

« SQRT (11.399) = 3.376 =t in Hamilton table 7.1
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Conditional Effect Plot

« Set all x-variables except x, to fixed values and
enter these into the equation for the logit

* Plot Pr(Y=1) as a function of x, i.e.
« P =1/(1+exp[-L]) = 1/(1+exp[-konst - b x,])
for all reasonable values of x, ,

“konst” is the constant obtained by entering into
the logit the fixed values of variables other than
Xk
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Excerpt from Hamilton Table 7.4

B S.E. Wald df | Sig. | Exp(B) | Minimum | Maximum Mean
lived -,040 ,015 6,559 | 1| ,010 ,961 1,00 81,00 | 19,2680
educ -,197 ,093 4509 | 1| ,034 ,821 6,00 20,00 | 12,9542
contam 1,299 ATT 7,423 | 1| ,006 3,664 ,00 1,00 ,2810
hsc 2,279 ,490 | 21,591 1| ,000 9,763 ,00 1,00 ,3072
nodad -1,731 ,725 5696 | 1| ,017 AT7 ,00 1,00 ,1699
Constant 2,182 | 1,330 2692| 1| ,101 8,866

Logit:
L =2.182 -0.04*lived -0.197*educ +1.299*contam +2.279*hsc -1.731*nodad

Here we let "lived” vary and set in reasonable values for other variables
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02 =

Conditional effect plot from Hamilton table 7.4 (fig7.5):
effect of living for a long time in town

0

y=1/(1+exp(-(2.182-0.04x%-0.197x12.95+1.299x0.28+2.279<0.31-1.731x0.17))) Mean

y=1/(1+exp(-(2.182-0.04%-0.197x6+1.209x1+2.279x1-1.731x0))) Max
y=1/(1+exp(-(2.182-0.04%.0.197x20+1.209<0+2 279<0-1. 731x1))) Min
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Conditional effect plot from Hamilton table 7.4 (fig7.6):
effect of pollution on own land

0.6
0.4

y=(Hep({2 18200419 27019712 95+1.299¢+2 2790.31-1.731x0.17)))  mean

V=112 182-0.04x1-0.197:6+1.200¢+2 2791-1.731:0))) Max
V=1/(1H+ep(H2 182-0.04-81-0.19720+1.299+2 279-0-1.731x1))) Min
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Coefficients of determination

Logistic regression does not provide measures
comparable to the coefficient of determination in OLS
regression

Several measures analogous to R? have been
proposed

They are often called pseudo R?

Hamilton uses Aldrich and Nelson’s

pseudo R? = y2/(y2+n)

where y? = test statistic for the test of the whole

model against a model with just a constant and n=
the number of cases
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Fotnote:

» Hosmer-Lemeshow goodness-of-fit statistic.

This goodness-of-fit statistic is more robust
than the traditional goodness-of-fit statistic
used in logistic regression, particularly for
models with continuous covariates and studies
with small sample sizes. It is based on
grouping cases into deciles of risk and
comparing the observed probability with the
expected probability within each decile.
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Some pseudo R? in SPSS

» SPSS reports Cox and Snell, Nagelkerke, and in
multinomial logistic regression also McFadden’s
proposal for R?

« Aldrich and Nelson’s pseudo R? can easily be
computed by ourselves [pseudo R? = y?/(y?+n)]

Model Summary

Cox & Pseudo R-Square
-2 Log Snell R | Nagelkerke || Cox and Snell oex
Step | likelihood | Square R Square Nagelkerke ok
1 . B "1 | McFadden b
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Statistical problem: linearity of the logit

» Curvilinearity of the logit can give biased parameter
estimates

+ Scatter plot for y - x is not informative since y only
has 2 values

» To test if the logit is linear in an x-variable one may
do as follows
— Group the x variable

— For every group find average of y and compute the logit for
this value

— Make a graph of the logits against the grouped x
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Y="Closing school”’ vs. x= "Years lived in town”
1,00 GRERREDAEEZDO OCED OOADO © O o o
0,80 —
w
3
d 0,60— .
=h Scatter plot is not
2 very informative
2 0,40 —
o
2
3
0,00 < DAEDAD O QD CzBD o o
0,‘00 20‘.00 40!00 60‘.00 80!00 10(‘),00
YEARS LIVED IN WILLIAMSTOWN
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Linearity in logit: example
Recall: Logit = L, = In(O,) = In{p/(1-p;)}
YEARS LIVED IN WILLIAMSTOWN (Banded)
SCHOOLS
SHOULD <=3 4-6 7-11 | 12-22 | 23-33 | 34-44 |45+
CLOSE
N OPEN 7 14 7 22 1 13 13
N CLOSE 13 14 10 17 8 2 2
Within
group | Mean (=p) ,65 ,50 ,59 44 42 13 13
Logit | Ln(p/(1-p)) 0,619 0| 0364| -0241]-0323| -1,901| -1,901
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Chart

Is the B

logit NCA

linear in 2

"years .

lived in 2-

town”?

Maybe! trs s e e
GroupedLived [ll1 2 Wz BN+ s Wls [ 17

In case of curvilinearity the odds ratio is non-constant

Assume the logit is curvilinear in education. Then the odds ratio for
answering yes, adding one year of education, is:

aho-+0a *Alder-+b, *Kvinne +b H E.utd+1)+0 g, % E.Utd +1)°

ebO +b, *Alder +b, *Kvinne-+ .y *E.utd+h .4 , *E.utd >

B a2 *( E.utd?+2E.utd +1) B Dl H(2E.Utd +1)
e € _ o +hgo H(2E.utd+)

ebmdz*E.utdz e’
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Statistical problems: influence

* Influence from outliers and unusual x-values
are just as problematic in logistic regression
as in OLS regression

» Transformation of x-variables to symmetry will
minimize the influence of extreme variable
values

 Large residuals are indicators of large
influence
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Influence: residuals

* There are several ways to standardize residuals
—"Pearson residuals”
— "Deviance residuals”
* Influence can be based on
— Pearson residual
— Deviance residual
— Leverage (potential for influence): i.e. the statistic h,
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Diagnostic graphs

Outlier plots can be based on plots of
estimated probability of Y;=1 (estimated
P.) against

 Delta*B , A Bj , or

» Delta* Pearson Chisquare, A x2p(j) ., or

 Delta* Deviance Chisquare, A X2D(j)

* “Delta” can be translated as “change in”
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SPSS output

 Cook's = delta B in Hamilton

— The logistic regression analogue of Cook's influence statistic. A
measure of how much the residuals of all cases would change if a
particular case were excluded from the calculation of the regression
coefficients.

* Leverage Value = h in Hamilton
— The relative influence of each observation on the model's fit.

+ DfBeta(s) is not used by Hamilton in logistic regression

— The difference in beta value is the change in the regression coefficient
that results from the exclusion of a particular case. A value is computed
for each term in the model, including the constant.
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SPSS output from "Save” (1)

 Unstandardized Residuals

— The difference between an observed value and
the value predicted by the model.

* Logit Residual
~ e
e

_ [
i _ N /e

7 (1-7;)

7; is the probability that y; = 1; the “hat” means

estimated value
Spring 2010

;wheree, =y, — 7.
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SPSS output from "Save” (2)

« Standardized = Pearson residual

— The command "standardized” will make SPSS write a variable called
ZRE_1 and labelled “Normalized residual”

— This is the same as the Pearson residual in Hamilton

+ Studentized = [SQRT(delta deviance chisquare)]

— The command "Studentized” will make SPSS write a variable called
SRE_1 and labelled “Standardized residual”

— This is the same as the square root of "delta Deviance chisquare” in
Hamilton, i.e. "delta Deviance chisquare” = (SRE_1)?
* Deviance = Deviance residual

— The command "Deviance” will make SPSS write a variable called
DEV_1 and labelled “Deviance value”

— This is the same as the deviance residual in Hamilton
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Computation of Ay?p;

* Based on the quantities )
provided by SPSS we Ay = d
can compute “delta " (1-hy)

Pearson chisquare”

* Where it says r;in the
formula we put in
ZRE_1 and where it
says h; we putin LEV_1

Spring 2010 © Erling Berge 2010 514

© Erling Berge 2010

Spring 2010

257



Ref.: http://www.erlingberge.no/

deviance

J

formula

Spring 2010

h=LEV_17n the

Computation of Ay?p,

" Geviance ehisquare” A2, =SRE _1*SRE _I

we square SRE_1

2. Alternatively we put
in d=DEV_1 and

Based on the quantities provided by SPSS we
can compute "Delta Deviance Chisquare”

d;

AZEZJ(J') =

© Erling Berge 2010
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DeltaDevianceChisquare (with/CaseNO)
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Spring 2010

DeltaDevianceChisquare (with/delta B)
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© Erling Berge 2010

Spring 2010
Delta Pearson Chisquare (with/ delta B)
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CaseN | CaseN | CaseN CaseN | CaseN | CaseN
09 06 09 09 06 09
Variables 6 5 9 Variables 6 5 9
Y=close 1,00 ,00 ,00 ZRE_1 4,21 -2,48 -5,36
lived | 68,00 | 40,00 1,00 DEV_1 2,42 -1,98 -2,61
educ 12,00 12,00 12,00 DFBO_1 -,32 ,01 -,36
contam ,00 1,00 1,00 DFB1_1 ,01 ,00 ,00
hsc ,00 1,00 1,00 DFB2_1 ,02 ,01 ,02
nodad ,00 ,00 ,00 DFB3_1 -,08 -,15 -,18
PRE_1 ,05 ,86 ,97 DFB4_1 -,06 =17 -,19
COO0_1 ,64 34 A1 DFB5_1 -,08 ,16 14
RES_1 95 -,86 -97 DeltaPearsonKjiKv | 18,34 6,47 | 29,20
SRE_1 2,46 -2,04 -2,62 DeltaAvviksKjiKv 6,07 4,14 6,89
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From Cases to Patterns

» The figures shown previously are not
identical to those you see in Hamilton

 Hamilton has corrected for the effect of
identical patterns
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Influence from a shared pattern of x-
variables

* In a logistic regression with few variables many cases
will have the same value on all x-variables. Every
combination of x-variable values is called a pattern

* When many cases have the same pattern, every case
may have a small influence, but collectively they may
have unusually large influence on parameter
estimates

* Influential patterns in x-values can give biased
parameter estimates
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Influence: Patterns in x-values

* Predicted value, and hence the residual will be
the same for all cases with the same pattern

* Influence from pattern j can be found by means
of
— The frequency of the pattern
— Pearson residual
— Deviance residual
— Leverage: i.e. the statistic h,
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Finding X-pattern by means of SPSS

* In the "Data” — menu find the command "Identify
duplicate cases”

« Mark the x-variables that are used in the model and
move them to "Define matching cases by”

+ Cross for "Sequential count of matching cases in each
group” and "Display frequencies for created variables”

» This produces two new variables. One,
"MatchSequence”, numbers cases sequentially 1, 2, ...
where several patterns are identical. If the pattern is
unique this variable has the value 0.

» The other variable, "Primary...”, has the value 0 for
duplicates and 1 for unique patterns
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X-patterns in SPSS; Hamilton p238-242

Valid Cumulative
Frequency | Percent | Percent Percent
Duplicate Case 21 13,7 13,7 13,7
Primary Case 132 86,3 86,3 100,0
Total 153 100,0 100,0
Sequential count of Valid Cumulative
matching cases Frequency | Percent | Percent Percent
0 [115 patterns with 1 case] 115 75,2 75,2 75,2
1 [17 patterns with 2 or 3 cases] 17 11,1 11,1 86,3
2 [17-4=13 patterns with 2 cases] 17 11,1 11,1 97,4
3 [4 patterns with 3 cases] 4 2,6 2,6 100,0
Total 153 100,0 100,0
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Hamilton table 7.6 Symbols
J # unique patterns of x-values in the data (J<=n)
m. |# cases with the pattern j (m>=1)

O

Predicted probability of Y=1 for case with pattern j

<

I ly=1)

Sum of y-values for cases with pattern j (= # cases with pattern j and

r Pearson residual for pattern j

7+ | Pearson Chisquare statistic

Deviance residual for pattern j

Zo | Deviance Chisquare statistic

Leverage for case i

h. |Leverage for pattern |

Spring 2010
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New values for Ay*p; and Ay,

» By "Compute” one may calculate the Pearson
residual (equation 7.19 in Hamilton) and delta
Pearson chisquare (equation 7.24 in Hamilton)
once more. This will provide the correct values

» The same applies for deviance residual
(equation 7.21) and delta deviance chisquare
(equation 7.25a)
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Leverage and residuals (1)

* Leverage of a pattern is obtained as number of cases
with the pattern times the leverage of a case with this
pattern. The leverage of a case is the same as in
OLS regression

* Pearson residual can be found from

Yj—ijj

e (R
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Leverage and residuals (2)

* Deviance residual can be found from
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Two Chi-square statistics

 Pearson Chi-square ) )
statistics Xp = Z:; g
J:
» Deviance Chi-square S R
statistics Xo = Zd i

* Equations are the same
for both cases and
patterns
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The Chisquare statistics

Both Chisquare statistics:
1. Pearson-Chisquare y?, and
2. Deviance-Chisquare %%

« Can be read as a test of the null hypothesis
of no difference between the estimated
model and a “saturated model”, that is a
model with as many parameters as there are
cases/ patterns
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Large values of measures of influence

« Measures of influence based on changes in
(A) the statistic/ parameter value due to
excluded cases with pattern |

— AB, "delta B” - analogue to Cook’s D
— Ay’p; “delta Pearson-Chisquare”

— Ay*p “delta Deviance-Chisquare”
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What is a large value of Ay?s, and Ay*p

* Both Ay%p;, and Ay?p;, measure how badly the model

fits the pattern j. Large values indicates that the model
would fit the data much better if all cases with this
pattern were excluded

Since both measures are distributed asymptotically as
the chisquare distribution, values larger than 4
indicate that a pattern affects the estimated
parameters “significantly”

Spring 2010 © Erling Berge 2010 533

ABJ- “delta B”

* Measures the

standardized change r’h.
in the estimated ABJ- = J—JZ
parameters (b, ) that (1 — hj )

obtain when all cases

with a given pattern | Larger values means larger
are excluded influence

AB; >=1 must in any case be
seen as "large influence”
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delta B (with caseNO)

0,70
&
0,60 —
0,50
&
£ 0,40
! [5500]
9 S
S &
[
8 0,30 5500
o o
o
0,20 o <)
o [S] °
oo
° o
o
0,10— 5]
° ® c@00090 ° o
® 0 Ooo ° 8 g
o o
000 amsSS @S oS B @ Sooodn
T T T T T T
0,00000 0,20000 0,40000 0,60000 0,80000 1,00000

Predicted probability
Spring 2010 © Erling Berge 2010

535

Ay*p Delta Pearson Chisquare’

* Measures the
reduction in A
Pearson y?2 that
obtains from
excluding all

2
AP =

2
I

(1=h;)

cases with pattern
j
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Delta Pearson Chisquare (with delta B)
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Ay*p) “Delta Deviance Chisquare”

* Measures changes in 5
deviance that obtains A 2 dj
from excluding all cases Aoy = (1 _h )
with pattern | j

* This is equivalent to
2
Axar, ==2|LLy —LLy ]

LLy is the LogLikelihood of a model with K parameters estimated
on the whole sample and LLy; is from the estimate of the same
model when all cases with pattern j are excluded
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Delta Deviance Chisquare (with delta B)
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Influence of excluded cases/patterns
Logit coefficient
Variables in the Sample Excluding Excluding
model case 99 case 96
Ay?P(i) =18,34 Ay?P(i) =29,20
lived -,040 -,045 -,052
educ -,197 -,224 -,214
contam 1,299 1,490 1,382
hsc 2,279 2,492 2,347
nodad -1,731 -1,889 -1,658
Constant 2,182 2,575 2,530
2* £L(modell) -142,652 -135,425 -136,124
Spring 2010 © Erling Berge 2010 540
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Influence of excluded cases/patterns

08

-

20 40 60 80

y=1/(1+exp(~(2.18-0.04x-0.2x 13+1.3x0.28+2.28x0.31-1.73x0.17)))
y=1/(1+exp(-(2.53-0.05x-0.21x13+1.38x0.28+2.35x0.31-1.65x0.17)))
y=1/(1+exp(-(2.58-0.04x-0.22x13+1.49x0.28+2.49x0.31-1.89x0.17)))
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Conclusions (1)

Ordinary OLS do not work well for
dichotomous dependent variables since

« ltis impossible to obtain normally distributed errors or
homoscedasticity, and since

*  The model predicts probabilities outside the interval [0-1]
The Logit model is for theoretical reasons better

. Likelihood ratio tests statistic can be used to test nested
models analogous to the F-statistic

* Inlarge samples the chisquare distributed Wald statistic [or
the normally distributed t=SQRT(Wald)] will be able to test
single coefficients and provide confidence intervals

. There is no statistic similar to the coefficient of determination
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Conclusions (2)

. goefﬁcient of estimated models can be interpreted
y
1. Log-odds (direct interpretation)
2. Odds
3. Odds ratio
4. Probability (conditional effect plot)

* Non-linearity, case with influence, and
multicollinearity leads to the same kinds of
problems as in OLS regression (inaccurate or
uncertain parameter values)

» Discrimination leads to problems of uncertain
parameter values (large variance estimates)

+ Diagnostic work is important
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Causal analysis
Structural equation models

 Hamilton, Lawrence C. 2008. A Low-Tech
Guide to Causal Modelling.
http://pubpages.unh.edu/~Ich/causal2.pdf
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Causal analysis

* Experiment
— Randomized causal impacts ("treatment”) provide
precise causal conclusions about effects ("response”)
if there is significant differences in the mean response
(effect)
— Experiments can be impossible to achieve due to
 Practical conditions
» Economic constraints
» Ethical judgements
* Instead one tries to obtain quasi-experiments
— Using for example regression analysis
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Model of causal effects Ref-

» Research using observations utilize concepts
from experimental design

" 13

— “Treatment”, “Stimulus”
— “Effect”, “Outcome”

Ref.:

Winship, Chrisopher, and Stephen L. Morgan 1999 “The Estimation of
Causal Effects from Observational Data”, Annual Review of Sociology Vol
25: 659-707
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Experiments allocate "cases”
randomly to one of two groups:

« TREATMENT (T) « CONTROLL (C)
with observation with observation
— before treatment — before non-treatment
— after treatment — after non-treatment
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The counterfactual hypothesis for the study
of causality

1344
|

* Individual “i” can a priori be assumed selected
for one of two groups
— Treatment group, T, or control group, C.

* Treatment, t, as well as non-treatment, c, can
a priori be given to individuals both in the T-
and C-group

* In reality we are able to observe t only in the
T-group and c in the C-group
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* There are for each individual

Modelling of causal effects:
The counterfactual hypothesis (1)

outcomes

—Y,(c,C) or Y (t,C); if allocated to a control group
-Y,(c,T)orY,(t,T) ; if allocated to a treatment group

— Only Y(c, given that ”i” is a member of C) or

—-Y,(t, given that ”’i” is a member of T) can be
observed for any particular individual

Spring 2010 © Erling Berge 2010

four possible

549

Modelling of causal effects:
The counterfactual hypothesis (2)

More formally one may write the possible
outcomes for person no i:

Treatment: t Non-treat.: ¢

T-group YieT YSeT
C-group YieC YSeC
Spring 2010 © Erling Berge 2010
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Modelling of causal effects:
The counterfactual hypothesis (3)

Then the causal effect for individual i is

° 6, =Y (t)-Y:(c)

Only one of these two quantities can be
observed for any given individual

This leads to the “counterfactual hypothesis”
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The counterfactual hypothesis:
concluding

* “The main value of this counterfactual
framework is that causal inference can be
summarized by a single question: Given that
the §, cannot be calculated for any individual
and therefore that Y, and Y¢ can be observed
only on mutually exclusive subsets of the
population, what can be inferred about the
distribution of the g, from an analysis of Y,and
T, ?” (Winship and Morgan 1999:664)
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Modelling of causal effects: from individual
effects to population averages

 We can observe
Y, (c |[ieC), but not Y, (t |ieC)

« The problem may be called a problem of
missing data

* |Instead of individual effects we can estimate
average effects for the total population
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Modelling of causal effects (1)

» Average effects can be estimated, but usually
it involves difficulties

* One assumption is that the effect of the
treatment will be the same for any given
individual independent of which group the
individual is allocated to

* This, however, is not self-evident
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Modelling of causal effects (2)

The counterfactual hypothesis assumes:

« That changing the treatment group for one
individual do not affect the outcome of other
individuals (no interaction)

« That treatment in reality can be manipulated
(e.g. sex can not be manipulated)
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Modelling of causal effects (3)

* One problem is that in a sample the
process of allocating person noito a
control or treatment group may affect the
estimated average effect (the problem of
selection)

* In some cases, however, the interesting
quantity is the average effect for those who
actually receive the treatment
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Modelling of causal effects (4)

|t can be shown that there are two sources
of bias for the estimates of the average
effect

1. An established difference between the C-
and T- groups

2. The treatment works in principle differently
for those allocated to the T-group compared
to those in the C-group

— To counteract this one has to develop models of
how people get into C- and T-groups (selection
models)
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Modelling of causal effects (5)

* A general class of methods that may be used
to estimate causal effects are the
regression models

» These are able to “control for” observable
differences between the C- and T- groups,
but not for unequal response to treatment
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Causal modelling

» “path analysis” or “structural equations
modelling” go back to the 60ies

» Joerskog and Soérbom: LISREL
— Use maximum likelihood to estimate model
parameters maximising fit to the variance-
covariance matrix
— Commonly available in statistical packages
+ Covariance structural modelling

+ Structural equation modelling
* Full information maximum likelihood estimation

Spring 2010 © Erling Berge 2010
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Structural equation models:
Low-Tech approach

* Uses OLS to do simple versions of the structural

equations models
* The key assumption is the causal ordering of

variables. In survey data this ordering is supplied by

theory

* The causal diagram visualize the order of causation:

— Causality flows from left to right
— Intervening variables give rise to indirect effects
— “reverse causation” creates problems

Spring 2010 © Erling Berge 2010
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Low-Tech causal modelling
Figure 1

Independent
variable

X,

Intervening Dependent

variable _) variable

/ = -
Independent

variable

X,
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Multiple regression as a causal model
Figure 2
Independent
» variable
X, by 2
r12<
13
Independent
: b Dependent
variable Y2.13 3| variable
23
Independent byi
variable Y(1-Ry1x")
X;
Unmeasured
influences Uy
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Quantities in the diagram

ro, M3, 3 |Pearson correlations among x-variables

byq .3, €tc. |Usually a standardized regression
coefficient (“beta weight”) taken from the

regression of Y on X,, and “.” means
controlled for X,, X,

Ry 1052 Coefficient of determination R? from the
regression of Y on X, X,, X5

V{1-R,.,,2 |Is an estimate of unmeasured influences
called error term or disturbance
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Multiple regression

» All assumptions and all problems apply as
before

— Note in particular that error terms must be
uncorrelated with included x-variables (all relevant
variable are included)

* If some of the X-es are intervening in figure 2
the model is too simple, but it matters only if
we are interested in causality
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Path coefficients
Figure 3

Independent
variable

X,

Intervening bys12 Dependent

variable —| variable

X; Y
%
Independent

12

variable \f(l_RY 1132)
X 2
Unmeasured Unmeasured
influences U, influences Uy
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New elements in figure 3

bs4,, b3y 1 | Standardized regression coefficients (“beta
weight”) from the regression of X; on X,
controlled for X, and from the regression
of X5 on X, controlled for X,

R, 52 Coefficient of determination (R?) from the
regression of X5 on X; and X,

\/{1-R3_122} The error term from the regression of X,
on X, and X,
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The structural model of figure 3

YA = Dyq 23X1 + Dyp 13X5 + Dyg 10X5
X3 = Dgq2Xq + bgy 41X,

In structural equations variables and
coefficients are standardized

That means that variables have an average of 0
and a standard deviation of 1 and that
coefficients vary between -1 and +1
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Figure 5: the regression of X; on X, and X,

Independent
variable
X,
31.2
Intervening
variable
X5
b3y
Independent
variable Y(1-R, 1,0
X,
Unmeasured
mnfluences T,
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Direct, Indirect and Total Effects

* Indirect effects equal the product of
coefficients along any series of causal paths
that link one variable to another

 Total effects equal the sum of all direct and
indirect effects linking two variables
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Indirect effects as products of path coefficients

\A( = Dy1.23X4 + Dyp43X; + by 12X3

" X3 =Dy X4 + b3y Xy

Means that we have

Y = byq 23X; + Dy 13X + bys X3

= byq 23Xy + Dyp 13X5 + Dygra(bsg 2Xq + bay 4X5)

= byq 23Xy + Dyp 13X5 + Dy 12031 2Xq + bys 15D35 41X

= (by1.23 + by3.120312)Xq + (byg 13 + Dy3.12030 )X,

Compare compound coefficients to the diagram
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Structural model

Independent
variable

X,

Intervening bys12 Dependent

variable ———>| variable

X5 Y
I)32.1
Independent

12

variable Y(1-Ry1n’)
X,
Unmeasured Unmeasured
influences U, influences Uy
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Path Coefficients

« X, toY: by, o3 (regression coefficient of Y on X,
controlling for X2 and X3)

« X, toY: by, 43 (regression coefficient of Y on X,,
controlling for X, and X3)

« X5toY: bys 4, (regression coefficient of Y on X,
controlling for X, and X,)

« X, to X;: by, , (regression coefficient of X; on X,,
controlling for X,)

« X, to X;: bs, 4 (regression coefficient of X; on X,
controlling for X,)

Spring 2010 © Erling Berge 2010 572
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Direct effects

XitoY: by regression coefficient of Y on X1, controlling

for X2 and X3

X, t0Y: bys 43 regression coefficient of Y on X2, controlling

for X1 and X3

X310 Y: bys 4, regression coefficient of Y on X3, controlling

for X1 and X2

X, to X5: bsq regression coefficient of X3 on X1,

controlling for X2

X, to X5: bsy 4 regression coefficient of X3 on X2,

controlling for X1

Spring 2010
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Indirect and total effects

Indirect effects

X; toY, through X:

D312 % bys 42

X, to 'Y, through Xj:

D354 % Bys gz

Total effects

X;toY: by123 + (D312 % bys42)
X,toY: byo13 + (B354 % byj45)
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Additions to multiple regressions

« We learn something new if the indirect effects
are large enough to have substantial interest

» More than two steps of causation tends to

become very weak
—0.30.3*0.3 = 0.027

— 0.3 standard deviation change in causal variables
leads to a 0.027 standard deviation change in the

dependent variable

Spring 2010
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Example of a model diagram with path coefficients

Y,= Eiga utd

By,=-0,22

\Y3= Livet pﬁ

landet

B,=10,36

best

Y,= Eiga innt

v,=-0,34
X,=Alder
V31— 07\09\
¥, = 0,17
V.= 0,05
X,= Kvinne
V2= 0,32

Figur 2.1

Spring 2010
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B5,=—0,05

| Note differences in symbols
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Comment to the figure above

» The B coefficients go from one Y variable to
another

» The vy coefficients go from one X variable a 'Y
variable

» The coefficient indexing indicates which
variables they link. The first index tells the
dependent variable. The second index tells the
independent variable

» The coefficients are standardized (OLS)
regression coefficients (“beta weights”)
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The structural model of the example

~

Y3 = V31 Xq + ¥32X5 + Bag Yy + B35

Yy = ¥21 Xy + ¥22X5 + By Y

Y1 = yeXq + 712X

Y, =0.09X, —0.22Y, - 0.05Y,
Y, =0.17X, + 0.32X, + 0.36Y,

Y1 = _034X1 + 017X2
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Direct and indirect effects on “Livet pa
landet best” from age

+ Direct effect: y;, = 0.09

* Indirect effect by way of “Eiga utd” and “Eiga innt”
* Ba1 " Va1t Baz * Bar T Va1t Baz Yo

s (—0.22)*(=0.34)+(—0.05)*(0.36)*(—0.34)+(—0.05)*(0.17)
[10.22*0.34 + 0.05*0.36*0.34 — 0.05*0.17

* 0.0748 + 0.00612 — 0.0085 = 0.07242

» Total effect = 0.09 + 0.07242 = 0.16242

* Increasing age by 1 st. dev. leads to an increase of
0.16 st.dev. in the strength of support for “Livet pa
landet best”
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Variables and measurement

+ All interval scale variables used in multiple regression
(including non-linear transformed variables and interaction
terms) can be included in structural equations models

« But interpretation becomes tricky when variables are
complex. Conditional effect plots are very useful

* Robust, quantile, logit, and probit regression should not be
used

+ Categorical variables should not be used as intervening
variables

» Scales or index variables can be used as usual in OLS
regression
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Concluding on structural equations modelling

* Including factors from factor analysis as explanatory variables
make it possible to approximate a LISREL type analysis

+ If assumptions are true LISREL will perform a much better
and provides more comprehensive estimation, but too often
assumptions are not true. Then the low-tech approach has
access to the large toolkit of OLS regression for diagnostics
and exploratory methods testing basic assumptions and
discovering unusual data points

+ Simple diagnostic work sometimes yields the most
unexpected, interesting and replicable findings from our
research
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Principal components and factor analysis

Hamilton Ch 8 p249-282
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Principal components and factor analysis

 Principal components and factor analysis are
both methods for data reduction

* They seek underlying dimensions that are able
to account for the pattern of variation among a
set of observed variables

 Principal components analysis is a
transformation of the observed data where the
idea is to explain as much as possible of the
observed variation with a minimum number of
components
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Factor analysis

» Estimates coefficients on - and variable values of -
unobserved variables (Factors) to explain the co-
variation among an observed set of variables

* The assumption is that a small set of the unobserved
factors are able to explain most of the co-variation

* Hence factor analysis can be used for data
reduction. Many variables can be replaced by a few
factors
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Factor analysis

-k=1,2,3,...,K
* Symbols
— K observed variables, Z, ; k=1,2, 3, ... ,K
— J unobserved factors, FJ- =1, 2,3, ..., Jwhere J<K

— For each variable there is a unique error term, u,, also
called unique factors while the F factors are called
common factors

— For each factor there is a standardized regression
coefficient, ¢, also called factor loading; k refers to variable
no, j refers to factor no. An index denoting case no has
been omitted here.
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Correlation of factors

» Factors my be correlated or uncorrelated
— Uncorrelated: they are then called orthogonal
— Correlated: they are then called oblique
» Factors may be rotated
— Oblique rotations create correlated factors
— Orthogonal rotations create uncorrelated factors
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Principal components

 Represents a simple transformation of variables. There are as
many principal components as there are variables

» Principal components are uncorrelated

+ If the last few principal components explain little variation we
can retain J<K components. Thus Principal Components also
can be used to reduce data.

where J<K and

the residual v, has small variance and consist of the
discarded principal components
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Principal components vs factor analysis

* Principal components analysis attempts to explain
the observed variation of the variables

* Factor analysis attempts to explain their
intercorrelations

» Use principal components to generate a composite
variable that reproduce the maximum variance of
observed variables

» Use factor analysis to model relationships between

observed variables and unobserved latent variables
and to obtain estimates of latent variable values

* The choice between the two is often blurred, to some
degree it is a matter of taste
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The number of principal components

+ Kvariables yield K principal components

* [f the first few components account for most of the variation,
we can concentrate on them and discard the remaining

* The eigenvalues of the standardized correlation matrix
provides a guide here

» Components are ranked according to eigenvalues

» A principal component with an eigenvalue A<1 accounts for
less variance than a single variable

» Thus we discard components with eigenvalues below 1

» Another criterion for keeping components is that each
component should have substantive meaning

Spring 2010 © Erling Berge 2010
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Eigenvalues and explained variance

* In a covariance matrix the sum of eigenvalues
equals the sum of variances.

* In a correlation matrix this = K (the number of
variables) since each standardized variable has a
variance of 1

* Thus the sum of eigenvalues of the principal
components

Mt A, vyt ...+ =Kand

A; I K = proportion of variance explained by
component no j

Spring 2010 © Erling Berge 2010
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Uniqueness and communality

 If K-J components are discarded and we have only J
factors

© Ly = gqFyt Rt HgF R+
» And an error term v,

* The variance of the error term is called the
uniqueness of the variable

« Communality is the proportion of a variable’s
variance shared with the components

« Communality = h,2 =1 - Uniqueness = % kkf =1,
J ; kK = variable number

Spring 2010 © Erling Berge 2010 591

Rotation to simple structure

* The idea is to transform (rotate) the factors so that the
loadings on each components make it easier to
interpret the meaning of the component

+ If the loading are close either to 1 or -1 on one factor
and close to 0 on all others the structure is simpler to
interpret: we rotate to “simple structure”. The rotated
factors fit data equally well but are simpler to interpret

* Rotations may be
— Orthogonal (rotation method typically: varimax)

— Oblique (rotation method typically: oblimin, promax)
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Why rotate?

Underlying unobserved dimensions may in
theory be seen as correlated

Allowing correlated factors may provide even
simpler structure than uncorrelated factors,
thus easier to interpret

All rotations fit data equally well

Hence the one chosen depends on a series of
choices done by the analyst

 Try different methods to see if results differ
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SPSS output

* For rotated factor solutions with correlated factors
SPSS provides two matrixes for interpretation

» The pattern matrix provides the direct regression of
the variables on the factors. The coefficients tells
about the direct contribution of a factor in explaining
the variance of a variable. Due to the correlations of
the factors there are also indirect contributions

» The structure matrix provides the correlations
between the variables and the factors
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Factor scores

» Both principal components and factor analysis may
be used to compute composite scores called factor
scores

* Recall that variables and factors are assumed to be
related like

 Thenitis possible to find values c; making
—Fj=cyZi+ CuZy + ... ¥ O Z+ ...+ CZ

* The coefficients c; are the factor score coefficients.
They come from the regression of the factor F; on the
variables
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Methods for extracting factors

* Principal factor analysis

— The original correlation matrix R is replaced by R* where
the original 1-values of the diagonal has been replaced by
estimates of the communality (the shared variance)

— The factors extracted tries to explain the co-variance or
correlations among the variables.

— The unexplained variance is attributed to a unique factor
(error term). The uniqueness may reflect measurement
error or something that this variable measure that no other
variable measure

— The most common estimate of communality is R,? the
coefficient of determination from the regression of Z, on all
other variables
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How many factor should we retain?

* In principal component analysis factors with
eigenvalues above 1 is recommended

* In principal factor analysis factors with eigenvalues
above 0 is recommended

* Procedure:
— Extract initial factors or components
— Rotate to simple structure
— Decide on how many factors to retain

— Obtain and use scores for the retained factors, ignoring
discarded factors

Spring 2010 © Erling Berge 2010 597

Concluding (1)

 Principal components

— transformation of the data, not model based.
Appropriate if goal is to compactly express most of
the variance of k variables. Minor components
(perhaps all except the first) may be discarded
and viewed as a residual.

» Factor analysis

— Estimates parameters of a measurement model
with latent (unobserved) variables.
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Concluding (2)

* Types of factor analysis

— Principal factoring — principal components of a
modified correlation matrix R* in which
communality estimates (R,?) replace “1” on the
main diagonal

* Principal factoring without iteration
* Principal factoring with iteration

— Maximum likelihood estimation — significance tests
regarding number of factors and other
hypotheses, assuming multivariate normality
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Concluding (3)

* Rotation

— If we retain more than one factor rotation simplifies
structure and improves interpretability

» Orthogonal rotation (varimax) maximum polarization given
uncorrelated factors

+ Obligue rotation (oblimin, promax) further polarization by permitting
interfactor correlations. The results may be more interpretable and
more realistic than uncorrelated factors

» Scores

— Factor scores can be calculated for use in graphs and
further analysis, based on rotated or unrotated factors and
principal components
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Concluding (4)

» Factor analysis is based on correlations and
hence as affected by non-linearities and
influential cases as in regression
— Use scatter plots to check for outliers and non-

linearities

— In maximum likelihood estimation this becomes
even more important since it assumes multivariate
normality making it even less robust than principal
factors
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Principal components of trust in

Malawi
« Survey of 283 households in 18 villages in
Malawi, 2007
* There are 8 related questions asked in one
group

» Are there 1, 2 or more underlying dimensions
shaping the attitudes expressed?

» Analysis of correlations (not co-variances)
* The questions:
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M3 Would you say you trust all, most, some or just a few
people in the following groups? (All=1 — None=5)
H All Most S Onl N Do not
a | Your family members S IR Iaiv il Il I
H All Most S Onl N D t
b | Your relatives e ool It It
H All Most Some Onlya | None | Do not
¢ | Your village fow P
H H All Most Some Onlya | None | Do not
d | People from outside the village fow P
H All Most Some Onlya | None | Do not
e | People of same ethnic group fow P
H H All Most Some Onlya | None | Do not
f | People from outside ethnic group fow P
g | People from same church/mosque Al | Most | Some | Onlya | None | Bo not
All Most Some Onlya | None | Do not
h | People not from same church/mosque fow P
Spring 2010 © Erling Berge 2010 603
Trust in Malawi: descriptive
Descriptive Statistics
Mean Std. Deviation Analysis N
M3.a. Trust in family
members 1.60 .935 266
M3.b. Trust in relatives 2.12 1.136 266
M3.c. Trust in people in
own village 2.69 1.090 266
M3.d. Trust in people
outside the village 3.28 1.118 266
M3.e. Trust in people of
same ethnic group 2.90 1.082 266
M3.f. Trust in people
outside ethnic group 3.26 1.098 266
M3.g. Trust in people from
same church/mosque 2.39 1.062 266
M3.h. Trust in people not
from same 3.02 1.197 266
church/mosque
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Trust in Malawi: correlation of variables

Correlation Matrix

M3.a. Trust | M3.b. Trust| M3.c. Trust | M3.d. Trust | M3.e. Trust | M3.f. Trust i M3.g. Trust | M3.h. Trust
in family in relatives | in people in | in people in people of | people in people in people not
members own village | outside the | same ethnic| outside from same | from same
village group ethnic group| church/mos | church/mosq
que ue
M3.a. Trust in family
members 1.000 .500 416 .236 .370 .316 422 .305
M3.b. Trust in relatives 500 1.000 496 .315 .363 .353 424 292
M3.c. Trust in people in
own village 416 496 1.000 482 .588 573 465 430
M3.d. Trust in people
outside the village .236 315 482 1.000 .526 610 .233 469
M3.e. Trust in people of
same ethnic group 370 .363 .588 .526 1.000 702 504 .643
M3.f. Trust in people
outside ethnic group .316 .353 573 .610 702 1.000 430 618
M3.g. Trust in people fro
same church/mosque 422 424 465 .233 .504 430 1.000 .536
M3.h. Trust in people nof
from same .305 292 430 469 .643 618 .536 1.000
church/mosque
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Scree Plot
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Trust in Malawi: factor/ component matrix

Component Matrix

Component

1 2
M3.a. Trust in family
members .588 .586
M3.b. Trust in relatives .624 532
M3.c. Trust in people in
own village 776 080
M3.d. Trust in people
outside the village 675 --398
M3.e. Trust in people of
same ethnic group 832 -221
M3.f. Trust in people
outside ethnic group 816 --330
M3.g. Trust in people from
same church/mosque 690 265
M3.h. Trust in people not
from same 757 -.262
church/mosque

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Spring 2010 © Erling Berge 2010 607
Trust in Malawi: loadings on orthogonal
factors
Rotated component matrix Unrotated Orthogonal

components varimax
Variables F1 F2 F1 F2
M3.a. Trust in family members .588 .586 M7 .821
M3.b. Trust in relatives .624 532 178 | .800
M3.c. Trust in people in own village 776 .080 572 | 531
M3.d. Trust in people outside the village 675| -.398 779 | .089
M3.e. Trust in people of same ethnic group 832 | -.221 798| .324
M3.f. Trust in people outside ethnic group .816 | -.330 .850 | .228
M3.g. Trust in people from same church/mosque 690 265 391 | 827
M3.h. Trust in people not from same church/mosque 757 | -262 762 | 246
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Trust in Malawi: communalities

Communalities

Extraction
M3.a. Trust in famil
members / 689
M3.b. Trust in relatives .671
M3.c. Trust in people in
own village PeoP 609
M3.q. Trust ir_1 people 614
outside the village ’
M3.e. Trus_t in people of 741
same ethnic group :
M3.f: Trust ip people 774
outside ethnic group ’
M3.g. Trust in people from 546
same church/mosque )
M3.h. Trust in people not
from same .641
church/mosque

Extraction Method: Principal Component Analysis.

Spring 2010
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Trust in Malawi: explained variance

Total Variance Explained

traction Sums of Squared Loadin

otation Sums of Squared Loadin

Compone] Total b of Varianc¢umulative 9 Total p of Varianc¢umulative 9
1 4.199 52.487 52.487 | 3.071 38.387 38.387
2 1.087 13.582 66.069 | 2.215 27.681 66.069
Extraction Method: Principal Component Analysis.
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Trust in Malawi: oblique factors pattern matrix

Rotated component matrix varimax oblimin promax
(orthogonal)
Variables F1 F2 F1 F2 F1 F2

M3.a. Trust in family members -.087 .868 -.145 .901

M3.b. Trust in relatives -.014 .826 -.067 .855

M3.c. Trust in people in own village 493 414 476 409

M3.d. Trust in people outside the village 838 133 864 -170

M3.e. Trust in people of same ethnic 797 120 806 093

group

M3.f. Trust in people outside ethnic 881 -.001 899 036
group

M3.g. Trust in people from same 268 573 937 582
church/mosque

M3.h. Trust in people not from same 779 045 792 016
church/mosque
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Trust in Malawi: oblique factors structure matrix

Rotated component matrix varimax oblimin promax

Variables F1 F2 F1 F2 F1 F2

M3.a. Trust in family members

M3.b. Trust in relatives

M3.c. Trust in people in own village

M3.d. Trust in people outside the village

M3.e. Trust in people of same ethnic group

M3.f. Trust in people outside ethnic group

M3.g. Trust in people from same
church/mosque

M3.h. Trust in people not from same
church/mosque

Spring 2010 © Erling Berge 2010 612
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Trust in Malawi: correlation of components

Component Correlation Matrix

Component 1 2
1 1.000 AT7
2 477 1.000

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser Normalization.
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Trust in Malawi: variables in component plot

Component Plot in Rotated Space
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Spring 2010

Trust in Malawi: Orthogonal Factor 1 by district
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Trust in Malawi: Orthogonal Factor 2 by district
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Trust in Malawi: Orthogonal factors by district

Case Processing Summary

Cases
Walid Missing Total
Disfrict Il FPercent I FPercent FPercent
RrITEhGR factlofr Stcore on F1 Rumphi 43 95 6% 2 4.4% 45 100.0%
arthogonal factars ;
varimax hizimba 37 82.2% 8 17.8% 45 | 100.0%
Kasungu 47 95.9% 2 4.1% 49 100.0%
Dawa 49 98.0% 1 2.0% 50 100.0%
Chiradzulu 46 93.9% 3 B.1% 49 100.0%
FPhalombe 44 97.8% 1 2.2% 45 100.0%
Case Processing Summary
Cases
Walid hissing Total
District I Percent I Percent Percent
REGR factor score on F2 Rurmphi 43 95 6% 2 4.4% 45 100.0%
arthogonal factors :
varireay Mzimba 37 82.2% 8 17.8% 45 | 100.0%
Kasungu 47 95.9% 2 4.1% 44 100.0%
Dowa 44 98.0% 1 2.0% a0 100.0%
Chiradzulu 46 93.9% 3 6.1% 44 100.0%
Phalombe 44 97.8% 1 2.2% 45 100.0%
Spring 2010 © Erling Berge 2010 617

Missing data
Biased samples

« Allison, Paul D 2002 “Missing Data”, Sage
University Paper: QASS 136, London, Sage,

Spring 2010 © Erling Berge 2010
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There is a missing case in the sample

+ If one person
— Refuses to answer
— Are not at home
— Has moved away
— Etc.

* The problem of missing data belong to the study of
biased samples. In general biased samples is a
more severe problem than the fact that we are
missing answers for a few variables on some cases
(see Breen 1996 "Regression Models: Censored,
Sample Selected, or Truncated Data”, QASS Paper
111, London, Sage)

» But the problems are related

Spring 2010 © Erling Berge 2010 619

Fotnote:

» Sja Breen 1996 "Regression Models: Censored,
Sample Selected, or Truncated Data”, QASS Paper
111, London, Sage,
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There are missing answers for a few variables if

* Persons refuse to answer certain questions

» Persons forget, or do not notice some question, or the
interviewer does it

* Persons do not know any answer to the question: “Do
not know” are often a valid answer category. But the
result is a missing answer

* The question is irrelevant (for the person)

* In administrative registers some documents may have
been lost

* In research designs where variables with
measurement problems may have been measured
only for a minority of the sample

Spring 2010 © Erling Berge 2010 621

Missing data entail problems

» There are practical problems due to the fact
that all statistical procedures assume
complete data matrices

* It is an analytical problem since missing data
as a rule produce biased parameter estimates

* It is important to distinguish between data
missing for random causes and those missing
from systematic causes

Spring 2010 © Erling Berge 2010 622
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The simple solution: remove all cases with
missing data

Listwise/ casewise removal of missing data means to remove all
cases missing data on one or more variables included in the
model

The method has good properties, but may in some cases
remove most of the cases in the sample

Alternatives like pairwise removal or replacement with average
variable value has proved not to have good properties

More recently developed methods like "maximum likelihood” and
"multiple imputation” have better properties but are more
demanding

In general it pays to do good work in the data collection stage

Spring 2010 © Erling Berge 2010 623

Types of randomly missing

« MCAR: missing completely at random

— Means that missing data for one person on the variable y is
uncorrelated with the value on y and with the value on any
other variable in the data set (however, internal case by
case the value of missing may of course correlate with the
value missing on other variables)

 MAR: missing at random

— Means that missing data for person i on the variable y do
not correlate with the value on vy if one control for the
variation of other variables in the model

— More formally:
Pr(Y; = missing | Y;,X;) = Pr(Y; =missing | X)

Spring 2010 © Erling Berge 2010 624
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Process resulting in missing

* Is ignorable if

— The result is MAR and the parameters governing the
process are unrelated to the parameters that are to be
estimated

* Is non-ignorable if

— The result is not MAR. Estimation of the model will then
require a separate model of the missing process

— See Breen 1996 "Regression Models: Censored, Sample
Selected, or Truncated Data”, QASS Paper 111, London,
Sage

* Here the situation with MAR will be discussed

Spring 2010 © Erling Berge 2010 625

Conventional methods

Common methods in cases with MAR data:

* Listwise deletion

» Pairwise deletion

« Dummy variable correction

 Imputation (Quessing a value for the missing)

Of the conventional methods listwise deletion
is the best

Spring 2010 © Erling Berge 2010 626
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Listwise deletion (1)

Can always be used

If data are MCAR we have a simple random
subsample of the original sample

Smaller n entails larger variance estimates

In the case of MAR data and the missing
values on an x-variable are independent of the
value on vy, listwise deletion will produce
unbiased estimates

Spring 2010 © Erling Berge 2010 627

Listwise deletion (2)

* In logistic regression listwise deletion may

cause problems only if missing is related both
to dependent and independent variables

If missing depends only on the values of the
independent variable listwise deletion is better
than replacement of missing values by
maximum likelihood and multiple imputation

Spring 2010 © Erling Berge 2010 628
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Pairwise deletion

* Means that all computations are based on all
available information seen pairwise for all pairs of
variables included in the anlysis

* One consequence is that different parameters will be
estimated on different samples (we see variation in n

from statistic to statistic)
* Then all variance estimates are biased

+ Common test statistics provides biased estimates
(e.g. t-values and F-values)

+ DO NOT USE PAIRWISE DELETION !!

Spring 2010 © Erling Berge 2010
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Dummy variable correction

If data is missing for the independent variable x
+ Let x* = x; if x; is not missing and
X*; = ¢ (an arbitrary constant) if x; is missing
« Define D=1 if x; is missing, 0 otherwise
« Use x* and D, in the regression instead of x;

* In nominal scale variables missing can get its own
dummy

Investigations reveal that even if we have MCAR data
parameter estimates will be biased

Do not use dummy variable correction!

Spring 2010 © Erling Berge 2010
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Imputation

* The goal is to replace missing values with
reasonable guesses about what the value might
have been before one does an analysis as if this
were real values; e.g.

— Average of valid values
— Regression estimates based on many variables and cases
with valid observations

» Parameter estimates are consistent, but estimates of
variances are biased (consistently too small), and
the test statistics are too big

» Avoid if possible the simple forms of imputation

Spring 2010 © Erling Berge 2010 631

Concluding on conventional methods for
missing data

« Conventional methods of correcting for missing data
make problems of inference worse

* Be careful in the data collection so that the missing
data are as few as possible

* Make an effort to collect data that may help in
modelling the process resulting in missing

+ If data are missing use listwise deletion if not
maximum likelihood or multiple imputation is
available
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© Erling Berge 2010

Spring 2010

316



Ref.: http://www.erlingberge.no/

New methods for ignorable missing data
(MAR data): Maximum Likelihood (ML)

» Conclusions

— Based on the probability for observing just those

values found in the sample

— ML provides optimal parameter estimates in large

samples in the case of MAR data

— But ML require a model for the joint distribution of
all variables in the sample that are missing data,
and it is difficult to use for many types of models

Spring 2010 © Erling Berge 2010
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ML-method: example (1)

Observing y and x for 200 cases Y=1|Y=2

150 distributed as shown

For 19 cases with Y=1 x is X=1]52 | 21

missing and for 31 cases with _

Y=2 x is missing X=2| 34 | 43

We want to find the probabilities — _

p; in the population Y=1]Y=2
X=1| P11 | P12
X=2| Py | P22

Spring 2010 © Erling Berge 2010
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ML-method: example (2)

* In a table with | rows and J columns, complete
information on all cases and with n; cases in cell ij the

Likelihood is

L= 1.—[, (py)"

That is the product of all probabilities for every table
cell taken to the power of the cell frequency

Spring 2010 © Erling Berge 2010 635

ML-method: example (3)

For a fourfold table the Likelihood will be

[ = ( p11 )nll ( p12 )n12 ( p21 )n21 ( p22 )nzz

For the 150 cases in the table above where we
have all observations the Likelihood will be

L= ( Py )52 ( P, )21 ( Py )34 ( P2, )43

© Erling Berge 2010 636
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ML-method: example (4)

For tables the ML estimator is p; = ny/n

This provides good estimates for the table where
we do not have missing data (listwise deletion)
How can one use the information about y for the
50 cases where x is missing?

Since MAR is assumed to be the case, the 50
extra cases with known y should follow the
marginal distribution of y

Pr(Y=1) = (pq1 + p2¢) @and Pr(Y=2) = (py, + p22)

Spring 2010 © Erling Berge 2010 637

ML-method: example (5)

» Taking into account all that is known about the 200
cases the Likelihood becomes

£=(py) (Pu) (P2)  (P)” (P + P2 (P + Do)

» The ML-estimators will now be
py=p(x=ily=)p(y=}j)

Spring 2010 © Erling Berge 2010 638
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ML-method: example (6)

» Taking into account the information we have about
cases with missing data, parameter estimates
change

Estimate of |Missing deleted Missing included

P11 0.346 0.317

Py 0.227 0.208

P, 0.140 0.156

Poo 0.287 0.319

Spring 2010 © Erling Berge 2010 639

The ML-method in practice

* For the general case with missing data there are two
approaches

— The expectation-maximization (EM) method, a two stage
method where one starts out with the expected value of the
missing data and use these to obtain parameter estimates
that again will be used to provide better estimates of the
missing values and so on ...

(this method provides biased estimates of standard errors)

— Direct ML estimates are better but can be provided only for
linear and log-linear models
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New methods for ignorable missing data (MAR
data): Multiple Imputation (MI)

« Conclusions

— Ml is based on a random component added to
estimates of the missing data values

— Has as good properties as the ML method and is
easier to implement for all kinds of models

— But it gives different results every time it is used

Spring 2010 © Erling Berge 2010 641

Multiple Imputation (1)

* MI have the same optimal properties as the ML
method. It can be used on all kinds of data and with
all kind of models. In principle it can be done with the
ordinary analytical tools

* The use of Ml can be rather convoluted. This makes
it rather easy to commit errors. And even if it is done
correctly one will never have the same result twice
due to the random component in the imputed
variable value
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Multiple Imputation (2)

» Use of data from a simple imputation (with or without
a random component) will underestimate the
variance of parameters. Conventional techniques are
unable to adjust for the fact that data have been
generated by imputation

* The best way of doing imputation with a random
component is to repeat the process many times and
use the observed variation of parameter estimates to
adjust the estimates of the parameter variances

+ Allison, p.30-32, explains how this can be done

Spring 2010 © Erling Berge 2010 643

Multiple Imputation (3)

* Ml requires a model that can be used to predict values of
missing data. Usually there is an assumption of normally
distributed variables and linear relationships. But models
can be tailored to each problem

* MI can not handle interactions

* MI model should contain all variables of the analysis
model

* (including the dependent variable)

* Ml works only for interval scale variables. If nominal
scale variables are used special programs are needed

» Testing of several coefficients in one test is complicated
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When data are missing systematically

« Will usually require a model of how the
missing cases came about

« ML and MI approaches can still be used, but
with much stronger restrictions and the results
are very sensitive for deviations from the
assumptions

Spring 2010 © Erling Berge 2010 645

Summary

* If listwise deletion leaves enough data this is
the simplest solution

* |f listwise deletion do not work one should test
out multiple imputation

* If there is a suspicion that data are not MAR
one needs to create a model of the process
creating missing. This can then be used
together with ML or MI. Good results require
that the model for missing is correct
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Types of biased samples

e Censored
* Truncated
e Selected

« Such samples arise because society works
“selectively”, and because we do not get
complete answers to questions asked

» Which variables and how they are truncated
determine the type of bias
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Causal analysis in biased samples

* Regression analysis

—Will (as a rule) have severe problems if the
sample is biased

» Hence

—The process of selection needs to be
included in the model or analysis
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Income

An example of how a biased sample may affect regression

/‘R/ealfelationshio

O [Estimated relationsh.

/

, , ; Education
@® |Conditional mean of Y in the population
O |Conditional mean of Y in the sample
Kjelde: Winship, Christopher, and Robert D. Mare 1992 «Models for sample selection |
bias». Annual Review of Sociologv. 18:327-350
Spring 2010 © Erling Berge 2010 649

Comments to the figure

Only persons with incomes below 15000 USD are
included in the sample

Result is erroneous estimate of the (real) impact of
education

Errors in reporting income creates a selected sample
Large errors in the original sample leads to exclusion

Large values on the independent variable leads to large
(negative) errors

The errors in the sample will be correlated with x
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Truncation of variables

* Avariable, X, is called truncated if we for X<c
or for X>c do not know more than that X<c or
X>c

» This is known as left or right side truncation
respectively

« We may have multiple truncation such as
simultaneous left side and right side truncation

Spring 2010 © Erling Berge 2010 651

Biased samples and missing data |

« Censored samples (explicit selection on Y)

—Y is unknown for cases where Y has value above
or below ¢

— X is known for all cases in the sample
« Selected samples (unsystematic selection)

—Y is unknown for cases where f. e. z=1 and known
if z=0
— X is know for all cases in the sample
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Selected or censored sample?

» The terminology is not very clear

* In general the distinction is a question of
interpretation and theoretical meaning
— If the missing observations on Y are caused by the

measurement method or data collection method
the sample is called censored

— If the missing observations of Y are caused by the
behaviour of the individuals the sample is called
selected

Spring 2010 © Erling Berge 2010 653

Biased samples and missing data |l

» Truncated samples (explicit selection on Y)

—Y is unknown for cases where Y has value above
or below ¢

— X is known when Y is known
« Selection on the independent variable

—Y is known for cases where X has a value above or
below ¢

— X is known when Y is known
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Consequences of biased samples

» Selection on the independent variable do
not cause problems

« Truncated, selected, and censored samples
cause the residual to be correlated with the
independent variables. Both external and
internal validity is compromised
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Causes of biased samples

 Data collection procedures and missing
answers may lead to truncated, selected or
censored samples

— For example: "missing” on a dependent variable
give a selected sample based on the variable Z,
answer or no answer

* In every non-random sample there is a
potential for erroneous conclusions due to
biased sample
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How to handle biased samples

* The analysis should at the outset
acknowledge the problem and use models that
are able to correct for bias in the sample
unless there are good reasons to believe the
problem is small

* The solution then is to

— 1) construct a model that predicts selection

— 2) use this model to construct a model that
predicts y conditional on the person having been
selected

Spring 2010 © Erling Berge 2010 657

A basic model for censored samples

E[Y| X] = Pr[Y>c | X]*E[Y | Y>c & X] +
PriY<=c | X]*E[Y | Y<=c & X]
Left side truncation of Y at c gives
E[Y|Y<=c & X]=c
It is always possible to transform Y so that ¢c=0,

hence the real regression, E[Y| X], can be
written

- E[Y| X] = Pr[Y>0 | X]*E[Y | Y>0 & X]
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The model in a truncated sample

* Yi=E[Yi|Yi<a& X]+ e

It can be shown that this is equivalent to

* Yi= E[Y; | X] - oli(m) +e
where A',(m) is an estimate of the Hazard rate at the
point

* m=(a-E[Y;| X])o

The parameters of E[Y; | X] are overestimated

The model can be estimated by the ML method
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Two step estimation in censored samples

* The selection model, Pr[Y>c | X], can be
modelled by probit regression on the
censored sample

* The model of the outcome , E[Y |
Y>c & X], can then be estimated on the
censored sample

* The results are trustworthy only in large
samples
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Problems in the two step model

» Results are sensitive for assumptions about the
distribution of the residual

— Homoscedasticity: deviation for this assumption is more
serious than in OLS since estimates in a censored model
are neither consistent, nor efficient

— Normal distribution
Both assumptions have to be properly tested

* There are also problems of identification of
parameters due to multicollinearity between the
hazard rate and the explanatory variables (see
Breen 1996:16 (equation 2.7)
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Two step estimation in OLS

is sensitive for

« Correlations between errors in the selection
equation (u) and errors in the outcome equation (e)

* Correlations between variables in the selection and
outcome equations

» Degree of censoring in the sample (how large a
fraction of the cases have missing y values?)

Conclusion: use ML-estimation
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